Document Type : Research Paper

Authors

1 Al_Mustasiriyah University- College of Education

2 Baghdad University - College of Science.

3 University Of Anbar - College of Science

Abstract

Co2O3 and Co2O3(1-x):Cux films have been deposited by using spray pyrolysis technique on a glass substrates. The optical properties of the cobalt oxide have been studied as a function of doping concentration with Cu. Changes in direct optical band gap energy of cobalt oxide films were confirmed after doping, Eg increased from 1.48 and 1.95 eV for the undoped Co2O3 to 1.55 and 2.05 eV with increasing the doping concentration to 5%. The effect of doping on the optical parameters of Co2O3 thin films such as transmittance, reflectance, absorption coefficient, refractive index, extinction coefficient, and real and imaginary parts of dielectric constant has been reported.

Keywords

Main Subjects

[1] C.F. Windisch, Jr., K.F. Ferris, G.J. Exarhos, (2001). Synthesis and characterization of       transparent conducting oxide, cobalt–nickel spinel films, J. Vac. Sci. Technol. A,   19(4) :1647-1652.
[2] S. M. Ciocılteu, M/ Salou,Y. Kiyozumi, S. Niwa, F. Mizukamia and M. Haneda, (2003). Uniform distribution of copper and cobalt during the synthesis of SiMFI-5 from kanemite through solid-state transformation, J. Mater. Chem., 13: 602–607.
[3] M. Mhamdi, S. K. Zineand and A. Ghorbel, (2008). Influence of the Co/Al ratio and the temperature of thermal treatment on cobalt speciation and catalytic properties of Co-ZSM-5 prepared by solid-state ion exchange, Applied Catalysis A: General,  337 (1): 39–47
[4] W. Y. Li and L. N. Xu, (2005). Co3O4 Nanomaterials in Lithium – Ion Batteries and Gas Sensors, Chen, Adv. Funct. Mater,. 15: 851-857.
[5] D. Barreca and C. Massignan, (2001). Composition and Microstructure of Cobalt Oxide Thin Films Obtained from a Novel Cobalt (II) Precursor by Chemical Vapor Deposition Chem. Mater., 13: 588-593.
[6] H. Pang ,  F. Gao ,  Q, Chen ,  R. Liu and Q. Lu, (2012). Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis, Dalton Trans., 41: 5862-5868.
[7] W. L. Roth, (1964). The magnetic structure of Co3O4, J. Phys. Chem. Solids, 25: 1-10.
[8] R. J. H Grisel and B.E Nieuwenhuys, (2001). Selective Oxidation of CO, over Supported Au Catalysts, Journal of Catalysis,  199(1): 48–59.
[9] M. Ando, T. Kobayashi, S. Iijima and M. Haruta, (1997). Optical recognition of CO and H2 by use of gas-sensitive Au–Co3O4 composite films, J. Mater. Chem., 7: 1779-1783.
[10] T. Seike and J. Nagai, (1991). Electrochromism of 3d transition metal oxides, Sol. Energy Mater., 22: 107-117.
[11] L. D. Kadam and P.S. Patil, (2001). Thickness-dependent properties of sprayed cobalt oxide thin films, Mater. Chem. Phys., 68: 225-232.
[12] S. Wang, B. Zhang, C. Zhao, S. Li, M. Zhang and L. Yan, (2011).  Valence control of cobalt oxide thin films by annealing atmosphere, Applied Surface Science,  257 (8): 3358–3362.
[13] V. R. Shinde, S. B. Mahadik, T. P. Gujar and C. D. Lokhande, (2006). Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis, Applied Surface Science, 252 (20): 7487–7492.
[14] H. K. Kim, T. Y. Seong, J. H. Lim, W. L. Cho and Y. S. Yoon, (2001).  Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors, J. Power Source, 102: 167-171.
[15] D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, and E. Tondello, (2001). Chem. Mater. 13 (2): 588
[16] X. Han, R. Liu, W. Chen and Z. Xu, (2008).  Thin Solid Films, 516: 4025- 4029.
[17] V. R. Shinde, S. B. Mahadik, T. P. Gujar and C. D. Lokhande, (2006). Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis, Applied Surface Science, 252: 7487–7492.
[18] J. Tauc, “Amorphous and Liquid Semiconductors, (1974). Ple-num Press, New York,.
[19] R. H. Misho and W. A. Murad,(1992) Solar Energy Materials and Solar Cells 27:335-345
[20] N. A. Subrahamanyam, (1977). A textbook of Optics, Brj Laboratory, Delhi,.
[21] T. S. Moss, G. J. Burrell and B. Ellis, (1973). Semiconductor Opto-Electronics, Wiley, New York,