Document Type : Research Paper

Authors

1 University of anbar

2 Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA.

3 Department of Biology, College of Science, University of Anbar. Ramadi, Anbar, Iraq.

Abstract

Klebsiella pneumoniae is a highly prevalent pathogen among nosocomial and community-acquired infections, including urinary tract infections (UTIs), pneumonia, surgical site infections, and bloodstream infections.
One hundred (100) isolates were obtained from different sources, including urine, burns, sputum, blood, and wound. All isolates were bacteriologically identified as Klebsiella pneumoniae using phenotypic and biochemical tests. The antimicrobial susceptibility test was done by using the disc diffusion method for thirteen different antimicrobial agents. String test was used to evaluate the hypermucoviscousity of the isolates and siderophore production was estimated by CAS agar and colorimetric methods. Two genes, iucA and iroB, were detected by PCR and their correlation with phenotypic markers was evaluated. The results showed that 51% of the isolates were positive for the string test and 49 % were negative. The results showed that the siderophores production ranged between 14 to 74 psu. Genotyping results showed that 23% of the isolates contained iucA gene and 17 % contained iroB. There was a high correlation between the two genes and the hypermucoviscousity. Also, siderophore production was highly associated with having one of the genes or both with more than 60 psu of siderophores production.

Keywords

Main Subjects

[1] Podschun, R. and Ullmann, U. (1998). Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clinical microbiology reviews, 11(4), 589-603.
[2] Kang, C. I., Song, J. H., Chung, D. R., Peck, K. R., Ko, K. S., Yeom, J. S., et al. (2011). Risk factors and pathogenic significance of severe sepsis and septic shock in 2286 patients with gram-negative bacteremia. Journal of Infection, 62(1), 26-33.
[3] Magill, S. S., Edwards, J. R., Bamberg, W., Beldavs, Z. G., Dumyati, G., Kainer, M. A., et al. (2014). Multistate point-prevalence survey of health care–associated infections. New England Journal of Medicine, 370(13), 1198-1208.
[4] Álvarez, D., Merino, S., Tomás, J. M., Benedí, V. J., et al. (2000). Capsular polysaccharide is a major complement resistance factor in lipopolysaccharide O side chain-deficient Klebsiella pneumoniae clinical isolates. Infection and immunity, 68(2), 953-955.
[5] Cortés, G., Borrell, N., de Astorza, B., Gómez, C., Sauleda, J., et al. (2002). Molecular analysis of the contribution of the capsular polysaccharide and the lipopolysaccharide O side chain to the virulence of Klebsiella pneumoniae in a murine model of pneumonia. Infection and immunity, 70(5), 2583-2590.
[6] Paczosa, M. K. and Mecsas, J. (2016). Klebsiella pneumoniae: going on the offense with a strong defense. Microbiology and molecular biology reviews, 80(3), 629-661.
[7] Sellick, J. A. and Russo, T. A. (2018). Getting hypervirulent Klebsiella pneumoniae on the radar screen. Current opinion in infectious diseases, 31(4), 341-346.
[8] Fang, C. T., Chuang, Y. P., Shun, C. T., Chang, S. C., et al. (2004). A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. The Journal of experimental medicine, 199(5), 697-705.
[9] Russo, T. A. and Marr, C. M. (2019). Hypervirulent Klebsiella pneumoniae. Clinical microbiology reviews, 32(3), 10-1128.
[10] Pomakova, D. K., Hsiao, C. B., Beanan, J. M., Olson, R., MacDonald, U., Keynan, Y., et al. (2012). Clinical and phenotypic differences between classic and hypervirulent Klebsiella pneumonia: an emerging and under-recognized pathogenic variant. European Journal of clinical microbiology & infectious diseases, 31, 981-989.
[11] Raymond, K. N., Allred, B. E., and Sia, A. K. (2015). Coordination chemistry of microbial iron transport. Accounts of chemical research, 48(9), 2496-2505.
[12] Boiteau, R. M., Mende, D. R., Hawco, N. J., McIlvin, M. R., Fitzsimmons, J. N., Saito, M. A., et al. (2016). Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean. Proceedings of the National Academy of Sciences, 113(50), 14237-14242.
[13] Bullen, J. J., Rogers, H. J., and Leigh, L. (1972). Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. Br med J, 1(5792), 69-75.
[14] Carniel, E. (2001). The Yersinia high-pathogenicity island: an iron-uptake island. Microbes and infection, 3(7), 561-569.
[15] Miethke, M. and Marahiel, M. A. (2007). Siderophore-based iron acquisition and pathogen control. Microbiology and molecular biology reviews, 71(3), 413-451.
[16] Brock, J. H., Williams, P. H., Liceaga, J., and Wooldridge, K. G. (1991). Relative availability of transferrin-bound iron and cell-derived iron to aerobactin-producing and enterochelin-producing strains of Escherichia coli and to other microorganisms. Infection and immunity, 59(9), 3185-3190.
[17] Hsieh, P. F., Lin, T. L., Lee, C. Z., Tsai, S. F., and Wang, J. T. (2008). Serum-induced iron-acquisition systems and TonB contribute to virulence in Klebsiella pneumoniae causing primary pyogenic liver abscess. Journal of Infectious Diseases, 197(12), 1717-1727.
[18] El Fertas-Aissani, R., Messai, Y., Alouache, S., and Bakour, R. (2013). Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathologie Biologie, 61(5), 209-216.
[19] Russo, T. A., Olson, R., Fang, C. T., Stoesser, N., Miller, M., MacDonald, U., et al. (2018). Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. Journal of clinical microbiology, 56(9), 10-1128.
[20] Yu, W. L., Ko, W. C., Cheng, K. C., Lee, C. C., Lai, C. C., and Chuang, Y. C. (2008). Comparison of prevalence of virulence factors for Klebsiella pneumoniae liver abscesses between isolates with capsular K1/K2 and non-K1/K2 serotypes. Diagnostic microbiology and infectious disease, 62(1), 1-6.
[21] Russo, T. A., Olson, R., MacDonald, U., Metzger, D., Maltese, L. M., Drake, E. J., and Gulick, A. M. (2014). Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Infection and immunity, 82(6), 2356-2367.
[22] Schwyn, B. and Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical biochemistry, 160(1), 47-56.
[23] Raaska, L., Viikari, L., and Mattila-Sandholm, T. (1993). Detection of siderophores in growing cultures of Pseudomonas spp. Journal of industrial microbiology and Biotechnology, 11(3), 181-186.
[24] Mahon, C. R. and Lehman, D. C. (2022). Textbook of diagnostic microbiology-e-book. Elsevier Health Sciences.
[25] Louden, B. C., Haarmann, D., and Lynne, A. M. (2011). Use of blue agar CAS assay for siderophore detection. Journal of microbiology & biology education, 12(1), 51-53.
[26] Namikawa, H., Niki, M., Niki, M., Oinuma, K. I., Yamada, K., Nakaie, K., et al. (2022). Siderophore production as a biomarker for Klebsiella pneumoniae strains that cause sepsis: A pilot study. Journal of the Formosan Medical Association, 121(4), 848-855.
[27] Qing-Ping, H. and Jian-Guo, X. (2011). A simple double-layered chrome azurol S agar (SD-CASA) plate assay to optimize the production of siderophores by a potential biocontrol agent Bacillus. African Journal of Microbiology Research, 5(25), 4321-4327.
[28] Payne, S. M. (1993). Iron acquisition in microbial pathogenesis. Trends in microbiology, 1(2), 66-69.
[29] Arora, N. K. and Verma, M. (2017). Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech, 7(6), 381.
[30] Martínez, J. L., and Baquero, F. (2002). Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clinical microbiology reviews, 15(4), 647-679.
[31] Li, W., Sun, G., Yu, Y., Li, N., Chen, M., Jin, R., et al. (2014). Increasing occurrence of antimicrobial-resistant hypervirulent (hypermucoviscous) Klebsiella pneumoniae isolates in China. Clinical infectious diseases, 58(2), 225-232.
[32] Liu, C. and Guo, J. (2019). Hypervirulent Klebsiella pneumoniae (hypermucoviscous and aerobactin positive) infection over 6 years in the elderly in China: antimicrobial resistance patterns, molecular epidemiology and risk factor. Annals of clinical microbiology and antimicrobials, 18, 1-11.
[33] Choby, J. E., Howard‐Anderson, J., and Weiss, D. S. (2020). Hypervirulent Klebsiella pneumoniae–clinical and molecular perspectives. Journal of internal medicine, 287(3), 283-300.
[34] Wang, L., Shen, D., Wu, H., and Ma, Y. (2017). Resistance of hypervirulent Klebsiella pneumoniae to both intracellular and extracellular killing of neutrophils. PLoS One, 12(3), e0173638.
[35] Brisse, S., Fevre, C., Passet, V., Issenhuth-Jeanjean, S., Tournebize, R., Diancourt, L., and Grimont, P. (2009). Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. PloS one, 4(3), e4982.
[36] Wu, K. M., Li, L. H., Yan, J. J., Tsao, N., Liao, T. L., Tsai, H. C., et al. (2009). Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. Journal of Bacteriology, 191(14), 4492-4501.
[37] Fung, C. P., Chang, F. Y., Lee, S. C., Hu, B. S., Kuo, B. I., Liu, C. Y., et al. (2002). A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis?. Gut, 50(3), 420-424.
[38] Cheng, H. Y., Chen, Y. S., Wu, C. Y., Chang, H. Y., Lai, Y. C., and Peng, H. L. (2010). RmpA regulation of capsular polysaccharide biosynthesis in Klebsiella pneumoniae CG43. Journal of Bacteriology, 192(12), 3144-3158.
[39] Monem Mohammed, K. A., Abdalla Ali Elhag, S., Tag Elser Sed Ahmed, S., Taher Gorish, B. M., Osman Noorelhuda Mohammed, S., Ismail Yahia Abdelmula, W., ... and H Ali, A. (2022). Molecular Detection of Virulence genes (rmpA2, iuc & iroB) of Hypervirulent Klebsiella pneumoniae in Clinical Isolates from Patients in Khartoum State, Sudan. Asian Journal of Research in Infectious Diseases, 9(4), 23-31.
[40] Russo, T. A., Shon, A. S., Beanan, J. M., Olson, R., MacDonald, U., Pomakov, A. O., and Visitacion, M. P. (2011). Hypervirulent K. pneumoniae secretes more and more active iron-acquisition molecules than “classical” K. pneumoniae thereby enhancing its virulence. PLoS One, 6(10), e26734.
[41] Li, J., Ren, J., Wang, W., Wang, G., Gu, G., Wu, X., et al. (2018). Risk factors and clinical outcomes of hypervirulent Klebsiella pneumoniae induced bloodstream infections. European Journal of Clinical Microbiology & Infectious Diseases, 37, 679-689.
[42] Liu, Y. M., Li, B. B., Zhang, Y. Y., Zhang, W., Shen, H., Li, H., and Cao, B. (2014). Clinical and molecular characteristics of emerging hypervirulent Klebsiella pneumoniae bloodstream infections in mainland China. Antimicrobial agents and chemotherapy, 58(9), 5379-5385.