
P- ISSN  1991-8941   E-ISSN 2706-6703           Journal of University of Anbar for Pure Science (JUAPS)     Open Access                                                     

2012,(6), (1 ) :71-75                              

 

71 

        ON DIFFERENTIAL IDEALS OF DIFFERENTIAL RINGS 

Yaseen  A.W.  Alhiti         

Ishik University Erbil – Iraq. 
 

 

 

A R T I C L E  I N F O   A B S T R A C T  

Received: 14    /  9  /2011 
Accepted:  26 / 3 /2012 

Available online: 30/10/2012 

DOI: 10.37652/juaps.2012.63155 
 

 

In this paper we introduce two operators denoted by ( )( ) n  and 
( )u  of a 

differential ring constructed from a subset of a differential ring. We shall also discuss 

the relationship between these operators and the differential ideals in differential 

rings, and Keigher differential ring.  
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Introduction 

     Rings considered in this paper are all 

commutative with unity. The 0  ring has 1 0= . Also, 

all differential rings are ordinary , i.e., posses a single 

derivation .Recall that by a derivation of a ring R we 

means any additive map : R R → satisfying 

( ) ( ) ( )ab a b a b  = +  for every , .a b R A differential 

ring R is a ring with a derivation .  If R is a 

differential ring and a R , then 
( )na denotes the n th 

derivative of .a A subset A of R is called differential 

if ( ) .A A  For any subset A of R , the set 
A = 

{ : ( ) }a A a A  is called the differential of .A   

     Let R be a differential ring and let A be a 

subset of R . We define a subset , denoted by ( )nA
 ,of 

R by  
( )

( ) { : ,n
nA a a A=  for all 0}n  .                                                

The following two theorems give some of the 

properties of ( )nA
. 

Theorem 1.1.  Let R be a differential ring . Then   (1)  

If  ,A R then 
( )nA A  and 

( ) ( ) ( )( ) .n n nA A=  

 (2)  If  A R , then 
( )nA A=  iff A is differential 

subset of R . 

   (3)  If ,A B are subsets of R with ,A B then 

( ) ( ).n nA B  

 

 

* Corresponding author at: Ishik University Erbil – 

Iraq.E-mail address:  al_hiti @ yahoo.com  

 

   (4)  If { } IA   is a family of subsets of R , then 

( ) ( )( ) ( )n n
I I

A A 
  

=
 and  

               
( ) ( )( ) ( )n n

I I

A A 
  


. 

  (5)  If ,A B are subsets of R , then  

( ) ( ) ( )( ) n n nA B A B+  +  and
( ) ( )( . ) . .n n nA B A B  

Theorem 1.2.  Let R and S be differential rings and 

let : R S → be differential ring homomorphism such 

that  (1) 1= .. If A is a subset of R and B is a 

subset of S , then 
( ) ( )( ) ( ( ))n nA A =  and 

1 1

( ) ( )( ) ( ( ))n nB B − −= . 

The proof of these theorems is elementary and follows 

immediately from the definitions . 

     From theorems 1.1 and 1.2, we see that for any 

subset A of a differential ring R , 
( )nA  is a 

differential subset . Also, the union and the 

intersection of any family of differential subsets is 

again a differential subset , and finite sums and 

products of differential subsets are differential subsets 

. Moreover , direct and inverse images of differential 

subsets under a differential ring homomorphism are 

differential. 

    Let A be a subset of a differential ring R .We 

define a subset , denoted by uA , of R by 

{ :uA a A b A=    such that 1}ab = . Hence , if 

A is a subring of R , uA  is the set of units in .A  

Theorem 1.3.  Let R be a differential ring and S a 

subring of R . Then 
( ) ( )( )n u n uS S S=  . 
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Proof. It is clear that ( ) ( )( )n u unS S S   , so let 

a S be such that 
( )na S for all 0,n   and suppose 

that 1ab = for some .b S We want to show that 

( )nb S for all 0n  . We may assume 1n   and 

that for each k < 
( ), .kn b S  Then by Leibnit

,z s  

rule [6] we have  

  ( )( )0 ( ) n nab ab= = + ( ) ( ) ( )

1

n
n k n k
k

k

a b −

=


 , 

So that  
                      

( )( ) ( ) ( )

1

( )
n

n kn n k
k

k

b b a b S−

=

= − 
 

Hence , 
( ) ( )( )n u n uS S S=  . 

 

2. DIFFERENTIAL IDEALS AND KEIGHER 

RINGS 

Theorem 2.1.  Let R be a differential ring and let A

be a subset of R , then  

      (1)  If A is a subring of R , then 
( )nA  is a subring 

of .R  

  (2)  If A is an ideal of R , then 
( )nA is an ideal of 

.R  

  Proof.   The proof of  part (1) follows immediately 

from the definition. To prove part (2) ,suppose  

x R and 
( )na A . Then by Leibentiz’s  rule [6] we 

have  

                                                      

( )( ) ( ) ( )

0

( )
n

n n k n k
k

k

x a x a −

=

=   

Since every 
( )n ka A−   and A is an ideal of 

( ), ( ) nR x a A  and hence 
( )nx a A . So that , 

( )nA  

is an ideal of .R  

  Recall that by a Ritt algebra [5]  we means any 

differential ring which contains the rational numbers. 

Also,  if I  is an  ideal  of a differential ring ,R  the set  

( ) { : nr I a R a I=    for some }n +  is called 

the radical of  I . An ideal I of R   is called  a radical 

ideal  if  ( )r I I= . 

Theorem 2.2.  Let R be a Ritt algebra and let I be a 

subset of ,R then  

        (1)  If I is a prime  ideal of R , then 
( )nI  is a 

prime  ideal  of .R  

       (2)  If I is a radical ideal of R , then 
( )nI  is a 

radical   ideal of .R  

Proof.  (1)  From theorem 1.4 we have 
( )nI  is an ideal 

of R , so suppose that 
( )na I  and 

( )nb I . Then 

there exist positive integers ,m n such that 

( ) ( ),m na I b I  and for all  k < m  and  l < n , 

( )ka I and 
( )lb I . Now let  

( )( ) ( )( )

0

( )
m n

m n m n m n kk
k

k

ab a b
+

+ + + −

=

=   

We note that ,   ( ) ( )( )m n m n kk
k a b I
+ + −

  for k < m , 

while for k > m , i.e. , for m n k+ − < ,n     

( ) ( ) ( )m n k m n k
k a b I+ + −  . 

If k m= , 
( ) ( )m na b I since I is a prime ideal , and 

since R is a Ritt algebra  

( ) ( ) ( )m n m
m

na b I+  .Hence ( )( ) m nab I+  , so that 
( )nI  

is a prime ideal. 

     (2)  Note that every radical ideal of R is an 

intersection of prime ideals of R and conversely . 

Since the operator 
( )( ) n  preserves the intersection of 

ideals by Theorem 1.1 and prime ideals by part (1) , 

we have well that 
( )( ) n  preserves the radical ideals. 

Definition 2.3 [7] .   Let R be a differential ring , R

is said to be a Keigher ring if for each prime ideal I in 

R , 
( )nI  is also prime ideal in .R  

Examples.                                                             1.  

Every Ritt algebra R  is a Keigher ring by the above 

Theorem 2.2.  

  2.  Every differential field F is a keigher ring. 

  3.  Every ring R with trivial derivation  ( i.e., 
( ) 0na =  for all  a R and 1n   )  is a          Keigher 

ring. 

Theorem 2.4.  Let R be a Keigher differential ring 

and : R S → a surjective differential ring 

homomorphism. Then S is also a Keigher ring. 

Proof.  Since   is surjective , then   induces a one-

to-one correspondence between prime ideals J in S

and prime ideals I in R containing the kernel of   

via 
1( )I J −=  and ( ).J I=  Hence if J is a prime 

ideal in ,S then we have 

1 1

( ) ( ) ( )( ( )) (( ( )) )n n nJ J J   − −= = . But since R
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is a Keigher ring , 
1

( )( ( )) nJ−
 is prime ideal in R and 

hence 
( )nJ  is prime ideal in .S  

    Recall that if S is a multiplicative subset of a 

differential ring R , then the ring opf fractions 
1S R−

is a differential ring via  

( ) ( )
( )

( )

1 1
1

2
( )

r s r r s

s s

−
= , see [ 

2 ]. 

    The following lemma was proved by Keigher in [7]. 

Lemma 2.5.   Let R be a differential ring . Let S be a 

multiplicative subset of R and I a prime ideal in R

such that I S = . Then in the differential ring 

1S R−
 we have  

1 1

( ) ( )( ) n nS I S I− −=  . 

Theorem 2.6. Let R be a Keigher differential ring 

and S a multiplicative subset of .R  Then 
1S R−

is 

also a Keigher ring. 

Proof.  The proof follows immediately from the 

Lemma 2.1 , since there is a one-to-one 

correspondence between prime ideals of 
1S R−

and 

prime ideals of R disjoint from S [7]. 

Corollary 2.7.   Let R be a differential ring and let 

P be a prime ideal of R , then R is a Keigher 

differential ring if and only if PR  is a Keigher ring . 

Proof.  If R is a Keigher ring , then so every PR  by 

Theorem  2.4.  Conversely , let P be a prime ideal of 

R and let : Pf R R→  be the canonical differential 

ring homomorphism . Let S R P= − , then since 

1 1( )P f S P− −= , we see that 
1 1

( ) ( )(( ) )n nP f S P− −=  

by Theorem 1.1, and since PR  is a Keigher ring ,

1

( )( ) nS P−
 is prime in PR . Hence 

( )nP  is prime in R

and R is a Keigher ring.  

Theorem 2.8.   Let 

1

n

i
i

R R
=

=
, where iR is differential 

ring . Then R is a Keigher ring if and only if each iR

is a Keigher ring. 

Proof.   If R is a Keigher ring , then so is each iR  by 

Theorem 2.3 . Conversely suppose that I is a prime 

ideal of R , and let :i iR R → , 1,2,...,i n= , be 

the canonical projections. Then ( )k kI I =  , 

1 k n  ,is a prime ideal in kR  and  

( )j jI R =  for j k . It is clear that 

1

( ) ( )(( ) )n nk kI I −= , and since kR is a Keigher ring , 

( )nI  is prime ideal of R and R is a Keigher ring.  

Definition 2.9 [5] .  A differential ring R is called a  

d MP−  ring if the radical of a differential ideal I of  

R is again a differential ideal. This is equivalent , see 

[2] , [3], [8], to each of the following :   

    (1)   Prime ideals minimal over differential ideals 

are differential ideals . 

    (2)  If  I is a differential ideal of R and S is a 

multiplicative subset of R disjoint from I , then ideals 

maximal among differential ideals which contain I

and are disjoint from S are prime.  

Theorem 2.10.  Let R be a differential ring . Then R

is a Keigher ring if and only if  it is a  d MP−  ring . 

Proof. See  [7] . 

    Let R be a differential ring . A differential ideal I

is prime if and only if there is a multiplicative subset 

S of R such that I is maximal among ideals disjoint 

from S [6].  

    Let R be a differential ring . A differential ideal I

is called quasi- prime ideal if there is a multiplicative 

subset S of R such that I is maximal among 

differential ideals disjoint from S . It is clear that 

every prime differential ideal is quasi-prime, and every 

quasi-prime ideal is prime if and only if R is a 

Keigher ring. 

Theorem 2.11.  Let R be a differential ring . If I is a 

prime ideal of R then 
( )nI  is a quasi-prime.  

Proof .   Let I be a prime ideal of R and let 

.S R I= −  It is clear that 
( )nI  is a differential ideal 

disjoint from S and if J is any differential ideal 

disjoint from S , then J I , so that 
( ) ( )n nJ J I= 

. Hence 
( )nI  is maximal among differential ideals 

disjoint from S . Now let K be a quasi- prime ideal of 

R and let S be a multiplicative subset of R such that 

K is maximal among differential ideals disjoint from 

S . Then there exists a prime ideal I of  R such that 

K I and I S = [1] .Hence   
( ) ( )u uK K I=    

and 
( )nI S = , so that 

( )nK I= . 

 

3. The Prime Spectrum of a differential ring  
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         In the sense of ring theory , for any commutative 

ring R , Spec ( )R denote the set of prime ideals in R

with the Zariski topology [4]. The following two 

theorems show how to create a topological space from 

a commutative ring R . This topological space is 

called the prime spectrum of R and the topology is 

called the Zariski topology.  

Theorem 3.1.   Let R be a commutative ring and let 

Spec ( )R be the set of all prime ideals of R . For any 

subset A of R let ( )V A be the set of all prime ideals 

of R that contain A . Then  

 (1)  ( ) (( ))V A V A=  for any subset A of R ( where 

( )A  is the ideal generated by ).A   

 (2)  (0)V =  Spec ( )R  and ( ) .V R =  

 (3)  If { }i i IA   is a family of subsets of R , then 

( ) ( )i i
i I i I

V A V A
 

= . 

 (4)  If A and B are two subsets of R , then 

( ) ( ) ( ).V A B V A V B =   

Parts (2), (3) and (4) show that the sets ( )V A , as A

runs over all subsets of R , satisfy the axioms for a 

collection of closed sets in a topological space . The 

subset  ( )V A  of Spec ( )R  are called Zarisky closed 

sets . Henceforth , Spec ( )R is considered to have the 

topology defined by taking the Zariski closed sets to 

be the closed sets −  this is the Zariski topology on 

Spec ( ).R  

Theorem 3.2.   Let R and S be commutative rings 

and let : R S →  be a ring homomorphism such that 

(1) 1 =  ideal of S , then 
1( )I −

is a prime ideal of 

R . Thus   induce a              map  

         
* : ( ) ( )Spec S Spec R →      defined by     

* 1( ) ( )I I  −=  for all ( ).I Spec S    

   (2)   For any ideal J in R , * 1
( ( )) (( ( )))V J V J 

−
=  ( 

where ( ( ))J  is the ideal  

           generated by ( )J in S ). Deduce that 
* is a 

continuous map with respect to                the Zariski 

topology on Spec ( )S and Spec ( )R . 

(3) If :S T → is also a homomorphism of 

commutative rings , then 
*( ) =  

          
* *.   

Proof .  The proof follows directly from the definitions 

, see [4]. 

    If  R  is a differential ring , the set of prime 

differential ideals in R will be denoted by  Spec ( )d R  

and will be called the prime differential spectrum of 

R . As a topologi- cal space , the set  Spec ( )d R  has 

the subspace topology from Spec ( )R . So that the 

closed sets in Spec ( )d R  are defined by the form  

( ) ( )V A V A =    Spec ( )d R ,  where    A is a subset 

of .R  

     Denote by ( )dr I the differential radical of 

differential ideal I of R and I  is called a differential 

radical ideal if ( )dI r I= . 

        For an element a R denote by [ ]a  the smallest 

differential ideal containing a . 

Some of properties of differential radical ideals are 

given in the following theorems. 

Theorem 3.3 [8] .  For a differential ring R the 

following conditions are equivalent : 

  (1)   Every differential ideal of R is differential 

radical ideal . 

  (2)   .I J I J=   for all differential ideals ,I J in 

R . 

  (3)    
2[ ]a [ ]a=  for all a R . 

      If  (( ))r A denotes the radical of the ideal in R

generated by A , ( )dr A denotes the differential 

radical of A ,  and ( )dr A can be defined as following 

:  

Theorem 3.3[8] . For any subset A of a differential 

ring R , the differential radical of A ,  ( )dr A  is the 

intersection of all differential prime ideals in R

containing A  . 

      It is clear that  , (( ))A r A  ( )dr A  and  

( ( ))d dr r A = ( )dr A , where A is a subset of .R  If  

Y is a subset of  Spec ( )
d

R , let  ( )dV Y  denote the 

intersection of all prime differential ideals of R which 

belong to .Y  It is easy to show that [9] : 

    (1)   ( )dV Y  is a differential ideal of ,R  and the 

map from Spec ( )d R  to R  given by   ( )dY V Y  

is order – reversing with respect to the partial ordering 

by inclusion in  Spec ( )d R  and .R  

    (2)   ( )dV R = . 
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    (3)   If  { }i i IY   is a family of subsets of  Spec

( )d R , then ( ) ( ).d i d i
i I i I

V Y V Y
 

=  

Theorem 3.4.  Let R be a differential ring , A a 

subset of R , and Y a subset of  

Spec ( )d R . Then 

       (1)  ( )V A  is closed in Spec ( )d R  and ( )dV Y is 

a differential radical ideal of .R  

       (2)  ( ( ))dV V A  is the differential radical of A

and  ( ( ))dV V Y  is the closure of Y in Spec ( )d R .   

Proof.  The proof follows from the definitions and the 

notes above. 

      Now let R and S be differential rings and 

: R S → be a differential ring homo- 

morphism . Then   induce a continuous map : 

Spec ( )S →   Spec ( )R  given by  

1( ) ( )P P  −=  for all P Spec ( ).S  It follows 

from Theorems 1.2 , 3.2  that  
  

 restricts to give a continuous map :d 
 Spec ( )d S →  

Spec ( )d R . If :S T → is another differential ring 

homomorphism , then it is clearly  that 

( )d d d     = . 
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 الخلاصة

 في بحثنا هذا عرفنا  مؤثرين يرمز لهما
( )u و( )( ) n  لتلننا الحلقننة   ثننم  اقعنننا ال  قننة بنن ن   لحلقة تفاضلية و قد تم بنائهما مننن مومةعننة ةزئيننة

 هذين المؤثرين والمثاليات التفاضلية لحلقة تفاضلية وبعكل خاصحلقة كيكر التفاضلية  
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