ISSN: 1991-8941

SOME TYPES OF COMPLETELY REGULAR SPACE AND IT'S RELATIONS

Taha Hameed Jasim Sufvan A. W College of computer sciences and Math. University of Tikrit Received: 30/9/2010 Accepted:2/5/2011

Abstract : In this paper, we introduced a new definitions of semi completely regular space and semi regular space . And we study some relations among

the $(s, g, s, g, g, s, g^*, s, g^*, g^*s)$ of completely regular spaces

1. Introduction

In 1970, Levine [7] introduced a new and significant notion in General Topology, namely the notion of a generalized closed set. A subset A of a topological space (X, \ddagger) is called generalized closed, (briefly g-closed), if cl(A) \subseteq U whenever A \subseteq U and U is open in (X,\ddagger) . This notion has been studied extensively in recent years by many topologists. The investigation of generalized closed sets has led to several new and interesting concepts . This notion has been studied extensively in recent years by many topologists because generalized closed sets are not only natural generalizations of closed sets.

P.Bhattacharya and B.K. Lahiri [8], S.P.Arya [10], investigated semi g closed set, g semi closed set respectively . P.Sundaramand A.Pushpalatha [9], Al-Ddoury A.F.[2] A.I.El-Maghrabi and A.A.Nasef [1]introduced and investigated strongly generalized closed sets ,semi strongly generalized closed set and strongly generalized semi closed, Respectively

.We study all definitions was in abstract,

(1) Generalized closed (briefly g-closed) if cl(A)

(2) Semi generalized closed (briefly sg-closed) if

 $scl(A) \subseteq G$ whenever $A \subseteq G$ and G is semi

 \subseteq G whenever A \subseteq G and G is open in X.[6]

relations and some properties .

2. Preliminaries

open in X.[7]

- (3) Generalized semi closed (briefly gs-closed) if $scl(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X.[3]
- (4) strongly generalized closed (briefly $g^* closed$) if cl(A) \subseteq G whenever A \subseteq G and G is g open in X [4]
- (5) semi strongly generalized closed (briefly

 $s g^*$ closed) if scl(A) \subseteq G whenever A \subseteq G and G is s g open in X [2].

(6) strongly generalized semi closed (briefly g*s-

closed) if $scl(A) \subseteq G$ whenever

 $A \subseteq G$ and G is g-open in X [9].

The complements of the above mentioned sets are called their respective open sets .

Definition 2.2: [5]A topological space

 (X,\ddagger) is called :

- (1) completely regular if for every closed $F \subset X$
- and $x \in X \setminus F$, there is a continuous function $f: X \Longrightarrow [0,1]$, such that f(x) = 0 and f(F) ={1}.
- (2) Regular space *if and only if* $\forall x \in X$ and $\forall F$ closed in X, $x \notin F$, $\exists U, V \in \ddagger$,

such that $x \in V$ and $F \subset V$ Definition 2.1: A subset A of atopolgical space is said to be: $\Im U | | V = W$.

Defention 2.3.[11] A topo log ical space

- (X,\ddagger) is said to be:
- (1) g Complete regular space (briefly g [CR]) if

g closed set F in X and $x \in X$ $, x \notin F$, Then \exists a continuous mapping $g: X \rightarrow [0,1]$ such that $g(F) = \{1\}$ and g(x) = 0. (2) g regular space (briefly g |R|) if and only if the g closed set A and point $x \notin A$ there exist disjint g open sets $U, V \in \ddagger$ such that $A \subseteq U$ and $x \in V$ $\ni U \cap V = W$. (3) semi g completely regular (briefy sg |CR|) if for every semi g closed set $F \subseteq X$ and $x \in X \setminus F$, there is a continuous function $f: X \rightarrow [0,1]$, such that f(x) = 0 and $f(F) = \{1\}$. (4) semi g regular (briefy sg |R|) if and only if the sg closedset A and point $x \notin A$, There exist disjoint semi g open sets $U, V \in \ddagger$ such that $A \subseteq U$ and $x \notin V \ni U \cap V = W$. (5) g semi completely regular (briefy gs [CR]) if for every g semi closed set $F \subseteq X$ and $x \in X \setminus F$, there is a continuous function $f: X \rightarrow [0,1]$, such that f(x) = 0 and $f(F) = \{1\}.$ (6) g semi regular (briefy gs[R]) if and only if the gs closed set A and point $x \notin A$, There exist disjoint g semi open sets $U, V \in \ddagger$ such that $A \subset U$ and $x \notin V \ni U \cap V = W$. (7) g^* Complete regular space (briefly g^* [CR]) if and only if

g closed set F in X and $x \in X$ $\ni x \notin F$. Then \exists a continuous mapping $g: X \rightarrow [0,1]$ such that $g(F) = \{1\}$ and g(x) = 0. (8) g^* regular space (briefly $g^*[R]$) if for each g^{*} closed set A and point $x \notin A$ there exist disjoint g^* open sets $U, V \subseteq X$ such that $A \subseteq U$ and $x \in V \ni U \cap V = W$ (9) semi g^{*} completely regular (briefy sg^* [CR]) if for every semi g^{*} closedset $F \subset X$ and $x \in X \setminus F$, there is a continuous function $f: X \rightarrow [0,1]$, such that f(x) = 0 and $f(F) = \{1\}$. (10) semi g^{*}regular (briefy sg^{*} [R]) if for each sg^{*} closed set A and each point $x \notin A$ There exist disjo int semi g^{*}opensets U, $V \subset X$ such that $A \subset U$ and $x \notin V$ (11) g^{*}semi completely regular (briefy $g^*s[CR]$) if for every g semi closed set $F \subseteq X$ and $x \in X \setminus F$, there is a continuous function $f: X \rightarrow [0,1]$, such that f(x) = 0 and $f(F) = \{1\}$. (12) g^* semi regular (briefy $g^*s[R]$) if for each g^{*}s closed set A and each point $x \notin A$ There exist disjoint g^* semi open sets $U, V \subseteq X$ such that $A \subset U$ and $x \notin V$.

3. Some Properties and Relations : Defention 3.1. A topological space (X, \ddagger) is called : (1) semi completely regular (briefy s [CR]) if for every semi closed set $F \subseteq X$ and $x \in X \setminus F$, there is a continuous function $f: X \rightarrow [0,1]$, such that f(x) = 0f(x) = 0 and $f(F) = \{1\}$. (2) semi regular (briefy s[R]) if for each semi closed set A and each point $x \notin A$ There exist disjoint semi open sets $U, V \subseteq X$ such that $A \subseteq U$ and $x \notin V$. Theorem 3.2. Every completely regular space is semi completely regular $Pr oof : Let (X, \ddagger) be$ completely regular space then F closed set in X and $x \in X \ni x \notin F$. Then \exists a continuous mapping $g: X \rightarrow [0,1]$ such that $g(F) = \{1\}$ and g(x) = 0by definition of Complete regular space), But every closed is semi closed [3]. Then (X, \ddagger) is semi completely regular Theorem 3.3. Every semi completely regular is s g Complete regular space $Pr oof : Let (X, \ddagger) be$ semi completely regular space then F semi closed set in X and $x \in X$ $i \in F$, Then \exists a continuous mapping $g: X \rightarrow [0,1]$ such that $g(F) = \{1\}$ and g(x) = 0 (by definition of semi Complete regular space), But every semi closed is s g closed [3].

Then (X,\ddagger) is s g Complete regular space Theorem 3.4. Every s g Complete regular space is g s Complete regular space $Proof: Let(X, \ddagger)be$ s g completely regular space then F s g closed set in X and $x \in X$ $i \in F$, Then \exists a continuous mapping $g: X \rightarrow [0,1]$ such that $g(F) = \{1\}$ and g(x) = 0 (by definition of s g Complete regular space), But every s g closed is g s closed [3]. Then (X, \ddagger) is g s Complete regular space. Theorem 3.5. Every completely regular space is s g completely regular $Pr oof : Let (X, \ddagger) be$ completely regular space then F closed set in X and $x \in X \ni x \notin F$, Then \exists a continuous mapping $g: X \rightarrow [0,1]$ such that $g(F) = \{1\}$ and g(x) = 0by definition of Complete regular space), But every closed is s g closed [3]. Then (X, \ddagger) is s g completely regular. Theorem 3.6. Every completely regular space is g s completely regular $Pr oof : Let (X, \ddagger) be$ completely regular space then F closed set in X and $x \in X \ni x \notin F$, Then \exists a continuous mapping $g: X \rightarrow [0,1]$ such that $g(F) = \{1\}$ and g(x) = 0 (by definition of Complete regular space), But every

closed is g s closed [3]. Then (X, \ddagger) is g s completely regular. Theorem 3.7. Every semi completely regular is g s Complete regular space $Proof: Let(X,\ddagger)be$ semi completely regular then F semi closed set in X and $x \in X$ $\ni x \notin F$, Then \exists a continuous mapping $g: X \rightarrow [0,1]$ such that $g(F) = \{1\}$ and g(x) = 0(by definition of semi completely regular), But every semi closed set is g s closed [3]. Then (X,\ddagger) is g s Complete regular space. Theorem 3.8. Every completely regular space is g^{*}Complete regular space $Proof: Let(X,\ddagger)be$ completely regular space then F closed set in X and $x \in X$ $i \neq x \notin F$, Then \exists a continuous mapping $g: X \rightarrow [0,1]$ such that $g(F) = \{1\}$ and g(x) = 0(by definition of Complete regular space), But every closed is g^{*}closed [2]. Then (X,\ddagger) is g^{*}Complete regular space. Theorem 3.9. Every g^{*}Complete regular space is g Complete regular space $Proof: Let(X,\ddagger)be$ g^{*}Complete regular space then F g^* closed set in X and $x \in X$ $\exists x \notin F$, Then \exists a continuous mapping

 $g: X \rightarrow [0,1]$ such that $g(F) = \{1\}$ and g(x) = 0(by definition of g^{*}Complete regular space), But every g^{*}closed is g closed [2]. Then (X,\ddagger) is g Complete regular space. Theorem 3.10. Every g^{*}Complete regular space is g s Complete regular space $Pr oof : Let (X, \ddagger) be$ g^{*}Complete regular space then F is g^* closed set in X and $x \in X$ $i \in F$, Then \exists a continuous mapping $g: X \rightarrow [0,1]$ such that $g(F) = \{1\}$ and g(x) = 0 (by definition of g^{*}Complete regular space), But every g^* closed is g s closed [2,3]. Then (X, \ddagger) is g s Complete regular space. Theorem 3.11. Every g^{*}Complete regular space is s g^{*}Complete regular space $Pr oof : Let (X, \ddagger) be$ g^{*}Complete regular space then is F g^* closed set in X and $x \in X$ $i \in F$, Then \exists a continuous mapping $g: X \rightarrow [0,1]$ such that $g(F) = \{1\}$ and g(x) = 0(by definition of g^{*}Complete regular space), But every g^* closed is s g^* closed [11]. Then (X,\ddagger) is s g^{*}Complete regular space. Theorem 3.12. Every g^{*} s completely regular is g completely regular is

Proof: Let (X,\ddagger) be g^*s completely regular then g^*s closed set F in X and $x \in X$ $i \in F$, Then \exists a continuous mapping $g \ni g: X \rightarrow [0,1]$ such that $g(F) = \{1\} and g(x) = 0$ (by definition of g^*s Complete regular space), But every g^*s closed is g closed [1]. Then (X, \ddagger) is g completely regular Theorem 3.13. Every g^{*}s completely regular is g s completely regular is Proof: Let (X,\ddagger) be g^*s completely regular then g^*s closed set F in X and $x \in X \ni x \notin F$, Then \exists a continuous mapping $g \ni g : X \rightarrow [0,1]$ such that $g(F) = \{1\}$ and g(x) = 0(by definition of g^*s Complete regular space), But every g^{*}s closed is g s closed [1,2,3,4]. Then (X, \ddagger) is g s completely regular Theorem 3.14. Every g Complete regular space is g s Complete regular space $Proof: Let(X, \ddagger) be$ g completely regular space then F is g closed set in X and $x \in X$ $i \neq x \notin F$, Then \exists a continuous mapping $g: X \rightarrow [0,1]$ such that $g(F) = \{1\}$ and g(x) = 0 (by definition of g Complete regular space), But every g closed is g s closed [3]. Then (X, \ddagger)

is g s Complete regular space.

Theorem 3.15. Every semi completely regular is g Complete regular space $Proof: Let(X, \ddagger) be$ semi completely regular then F is semi closed in X and $x \in X$ $i \in F$, Then \exists a continuous mapping $g: X \rightarrow [0,1]$ such that $g(F) = \{1\}$ and g(x) = 0(by definition of semi completely regular), But every semi closed is g closed [1,2,3,4]. Then (X,\ddagger) is g Complete regular space. Theorem 3.16. Every semi completely regular space is g^{*} s Complete regular space $Pr oof : Let(X, \ddagger) be$ semi completely regular space then F is semi closed set in X and $x \in X$ $i \in F$, Then \exists a continuous mapping $g: X \rightarrow [0,1]$ such that $g(F) = \{1\}$ and g(x) = 0 (by definition of semi Complete regular space), But every semi closed is g^{*} s closed [1]. *Then* (X, \ddagger) is g^{*} s Complete regular space Theorem 3.17. Every completely regular space is g completely regular $Pr oof : Let (X, \ddagger) be$ completely regular space then F closed set in X and $x \in X$ $i \in F$, Then \exists a continuous mapping $g: X \rightarrow [0,1]$ such that $g(F) = \{1\}$ and g(x) = 0 (by definition of Complete regular space), But every closed is g closed [3]. Then (X,\ddagger) is g completely regular

Theorem 3.18. Every completely regular space is g^{*} s Complete regular space $Proof: Let(X,\ddagger)be$ completely regular space then F closed set in X and $x \in X$ $i \neq x \notin F$, Then \exists a continuous mapping $g: X \rightarrow [0,1]$ such that $g(F) = \{1\}$ and g(x) = 0(by definition of Complete regular space), But every closed is g^* closed [11]. Then (X, \ddagger) is g^{*}s Complete regular space Theorem 3.19. Every completely regular space is s g^{*} Complete regular space $Proof: Let(X,\ddagger)be$ completely regular space then F is closed set in X and $x \in X$ $\ni x \notin F$, Then \exists a continuous mapping $g: X \rightarrow [0,1]$ such that $g(F) = \{1\}$ and g(x) = 0(by definition of Complete regular space), But every closed is s g^{*} closed [11]. Then (X,\ddagger) is s g^{*} Complete regular space. **REFRENCE**:

- A.I. El-Maghrabi and A.A.Nasef "Between semi-closed and GS-closed sets" Journal for science of taibah university,v.2:78-87(2009)
- [2] Al-Ddoury A.F.(2009) "On Bitopological Spaces "M.S.C. Thesis College of Education Tikrit University.
- [3] Alhawez,Z.T.(2008) "Generalizations of Slightly Continuous Function between ITS" M.S.C. Thesis College of Education Tikrit University
- [4] Alshamary, A.G. (2008) "On Generalized Homeomorphism between ITS "M.S.C. Thesis College of Education Tikrit University.
- [5] J.Dugungji , topology , library of congress catalog card number :66-1094 printed in the united States of America
- [6] Jones and Bartlett "Foundations of topology "second edition.printed in India by sanat printers Kundli-131028,sonepat,Haryara.
- [7] N.Levine, Generalized closed sets in topology, Rend.Circ. Mat.Palermo,19, (2) (1970), 89-96.
- [8] P.Bhattacharyya and B.K.Lahiri, Semi generalized closed sets in topology, Indian J. Math., 29 (1987), 375-382
- [9] P.Sundaram, A.Pushpalatha, Strongly generalized closed sets in topological spaces, Far East J. Math. Sci. (FJMS) 3(4) (2001), 563-575
- [10] S.P.Arya and T.Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21 (1990), 717-719.
- [11]Taha .H .J. And Sufyan A. W. AND Suham M.A." SOME PROPERTIES OF g* COMPLETELY REGULAR SPACE". Reseved by Sience Jorunal of Kirkuk .

بعض انواع الفضاءات المنتظمة الكاملة وتطبيقاتها

Email: sceanb@yahoo.com

الخلاصة:

في هذا البحث تم تقديم تعريفات جديدة ^{g, sg} للفضاء التبولوجي الكامل الأنتظام والمنتظم ودراسة العلاقات بين الفضاءات المنتظمة (sg *, sg *, g *, sg *, g *)