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 In this article, we study the periodic solution for a class of doubly degenerate 

parabolic equation with nonlocal terms and Neumann boundary conditions. By 

using the theory of Leray-Schauder degree, we obtain the existence of nontrivial 

nonnegative time periodic solution.  
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1. INTRODUCTION 

The goal of the present text is to consider the boundary 

conditions in equations (1.1) to (1.3) for periodic 

doubly degenerate parabolic equation with Neumann 

boundary. 

  

  
    (|   |        )  (   [ ])        

            (   )                                         1.1 
  

  
                 (   )      (   )        1.2 

 (   )   (   )                                1.3 

Where m ≥ 1, p ≥ 2, the habitat   is a bounded 

domain in ℝn with smooth boundary   , 
 

  
 denotes 

the outward normal derivative on   . The zero-flux 

boundary condition in equation (1.2) means that 

no individuals cross the boundary of the habitat, QT 

=   × (0, T). This problems is motivated by models 

which have been proposed for some problems in 

mathematical biology.  The unknown function 

u(x,t) depends on both location of x and time t, and 

the diffusion term    (|  |      ) , (    ∑
  

   

 
    ) 

models the tendency to avoid high density in the 

habitat. As population growing is controlled by 

birth, death, emigrant, and immigration, 

assumption of m,  [ ] hould be made to describe 

the ways in which a given population grows and 

shrinks over time. 

Recently, periodic problems with nonlocal 
terms have been investigated intensively by 
number of researchers [1–5]. A typical model was 
submitted by Allegretto and Nistri in which they 
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 proposed the following equations: 
  

  
      (       [ ]  ) 

with Dirichlet boundary conditions. Also, 

according to the actual needs, many authors diverts 

attention to nonlinear diffusion equations with 

nonlocal terms such as the porous equation [6, 7] with 

typical form: 
  

  
      (   [ ])            1.4 

 

And a class double degenerate parabolic 

equation [8] with the typical from shown in equation 

(1.5). 
  

  
    (|   |        )  (    [ ])                    

                                      1.5 

The equation (1.4) is degenerate if m > 1 and 

singular if 0 < m <1. In addition, equation (1.5) is also 

degenerate when u = 0, or when the gradient of u 

vanishes. These degenerate equations exhibit a doubly 

nonlinearity which generalize the porous medium 

equation p = 2 and the parabolic p-Laplace equation m 

= 1. If p = 1 and m = 1 then equation (1.5) becomes a 

nondegenerate  parabolic equation and heat equation is 

its special case.   

By comparing the doubly degenerate parabolic 

equation with Dirichlet boundary equation, the 

Neumann boundary condition causes an additional 

difficulty in establishing a priori estimate. On the other 

hand, different form the case of Dirichlet boundary 

condition, the auxiliary problem in equations (1.1) to 

(1.3) is considered for using the theory of Leray-

Schauder degree. We have proved that the problem in 

equations (1.1) to (1.3) admits a non-trivial 
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nonnegative periodic solution as shown in the 

following theorem. 

The rest of this article is organized as follows: 

In Section 2, we present some necessary preliminaries 

including the auxiliary problem. in section 3, we 

establish the necessary priori estimations of the 

solution of the auxiliary problem. Then the proof of 

the main result of this article is shown in the last 

section. 

2. Preliminaries 

In this paper, we assume that: 

     21   .  :        B L 

  R  are the boundary conditions functional satisfying the condition:  

 
 2

2
0     

L
u K u


      

 Where K > 0 is constant independent of u, +  22     0, . e.   .[0, ), ( ) { }L u a inL u

    R Ω │ Ω  

(B2)    ( , ) ( )T Tm x t C Q   and satisfies that  

0

1
{ : ( , ) 0}

T

x m x t
T

   , where ( )TTC Q   denotes the set of 

function which are continuous in  R0  and of T- periodic with respect to t. 

From (B2), we can see that there exist 0 0, 0, 0x m    such that 

0

0

1
( , ) ,

T

m x t dt m
T

  for all 0( , ).x B x    

Since the equation (1.1) is degenerate at points where 0,u   the problem (1.1)-(1.3) has no classical solutions in 

general, so we focus on the discussion of weak solution in the sense of the following  

1

0

1
( , ) .essin

T

x

f m x t dt
T




    

Where 1   is the first eigenvalue of the Laplacian equation on T with zero boundary and 1( )x  be the corresponding 

eigenfunction. 

Since the regularity follows from a quite standard approach, we focus on the discussion of weak solutions in the 

following sense.  

Definition 1 A function u is said to be a weak solution of the problem (1.1) - (1.3), if 

1,

0( ) ( ), (0, ; ( ) ( )m p p

T TT T Tu L Q C Q u L T W C Q      and u satisfies  

2

( ( [ ]) ) 0.
p

m m

QT

u u u m u u dxdt
t


  


       

           (2.1) 

For any 
1( )  ( ,0) ( , ).TC Q with x x t      

In order to use the theory of Leray-Schauder degree, we introduce a map by considering the following auxiliary 

problem  
2

  2
           

2
  ) )   ( [ ] ,      ( , )( ( ) ,(

p

Tu u m
u

div A u u
t

u u x t Q
      



   



        (2.4) 

  0,                                                                                                           (2.3) 
u

t





 

u (x,0)= u (x,T)                                                                                             (2.4)    

Where s
+
 = max {0,s} and 

1

   ( )   , mA u mu      is a sufficiently small positive constant , The desired solution will 

be obtained as the limit point of the solutions of the problem (1.1)-(1.3). In the following, we introduce a map by the 

following problem  

2
2

  2
         ) )   ,(( ( )

p
u

div A u u fu u
t


    




     


         ( , ) Tx t Q ,              (2.5) 
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0,
u

t





                                                                   ( , ) (0, ),x t T        (2.6) 

( ,0) ( , ),u x u x T                                                             ,x                    (2.7) 
 

Then we can define a map u Gf   with 

: ( ) ( ).T TT TG C Q C Q by applying classical 

estimated (see [9]), we can know that 
( )TL Q

u   is 

bounded by 
( )TL Q

f   and u  is Holder continuous in 

TQ  . Then by the Arzela-Ascoli theorem, the map G is 

compact. So the map is a compact continuous map. Let 

( ) ( [ ]f u m u u 

  ) where max{ , }u u o 

   we 

can see that the nonnegative solution of problem (1.1)-

(1.3) is also a nonnegative solution solves 

( [ ] )u G m u u  

   . So we will study the 

existence of the nonnegative fixed points of the map 

(( [ ]) )u G m u u  

   instead of the nonnegative 

solution of problem (1.1)-(1.3). 

 

 

 

3. Proof of the main results :First, by the same way as in [5], we can get the non-negativity of the solution of 

problem (2.2)-(2.4) . 

Lemma 1 If a nontrivial function ( )Tu C Q   solves (( [ ]) )u G m u u  

   , then  

( , ) 0u x t       , Tx t Q    

In the following, by the Moser iterative technique, we will show the  priori estimate for the upper bound of 

nonnegative periodic solution of problem (2.5)-(2.7). Here and below we denote by . (1 )
p

p    then ( )pL   

norm. 

Lemma 2 Let ( , )u x t  be a nontrivial periodic solution which solves (1,  ( )),  [0,1]u T f u     and then there 

exists a positive constant K independent of   and   , such that  

,                                                                                                                              (3.1)u k                                                                                                                     

Where ( ) (., ).u t u t    

Proof:  suppose u  is a nontrivial periodic solution, Multiplying Equation (2.5) by 
su  where ( 0)s   and integrating 

over  , we get 

( 2) 11
1 1

1 ( (0, )) 1

1
( ) ( ( )) ( , ) ( )

1 [ ( 2) 1]

p
m p sp p

s sp

ps L T s

p

d sp m
u t u t m x t u t

s dt m p s
  

  
 

  
  

   
  

Where ( ( , ) [ ] )a x t u Mu    and 

( , )

  ( , )sup T

x t

M a x t Q    

( 2) 11
1 1

1 1
( ) ( ( )) ( 1) ( )                         (3.2)

[ ( 2) 1]

p
m p sp p

s sp

ps s

p

d sp m
u t u t M s u t

dt m p s
  

  
 

 
   

  
            

And hence:  

( 2) 1
1 1

1 1
( ) ( ( )) ( 1) ( ) ,                                                    (3.3)

p
m p s

s sp

s s

p

d
u t C u t C s u t

dt
  

  
 

 
                                         

Where C is a positive constants independent of ,u k  and m  . 

Assume that ( ) 0u t 
  and set  

,
2

k

k

p
s p m

p
  


      

( 1)
,

( 2) 1

k
k

k

p s

m p s





  
  

( 2) 1

( ) ( )

m p s

p

ku t u t

  

   where ( 0,1,...)k    
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Then 
1

1,  k

k k kp m p m 

    .  

For convenience, we denote by C a positive constant independent of ,u k  and m  , which may take different values . 

From (3.3) we obtain  

( ) ( ) ( 1) ( ) ,                                                                     (3.4)k k

k k

p

k k kp

d
u t C u t C s u t

dt

 

 
     

We can using the Gagliardo-Nirenberg inequality, we have  
1

1
( ) ( ) ( )                                                                       (3.5)

k
k k kp

u t D u t u t
 




    

With 

( 1)
(0,1).

2 ( 1) 2

k
k

k

p m p N

m p N


 
 

  
  

By inequalities (3.4)-(3.5) and the fact that 
1

1
11

( ) ( ) ,k

k
k ku t u t








  we obtain the following differential inequality: 

( 1)

1
( ) ( ) ( ) ( 1) ( )k k

k k k

p p

k k k k k

d
u t C u t u t C s u t

dt


 

 
  



      

                    
1

1

( 1)

1( ) ( ) ( 1) ( ) .
k p k

k k k

p

k k k kC u t u t C s u t


 
 
  







      

Let 

max{1,sup ( ) },
k

k k
t

u t


    

We  have  

1

( 1) ( 1) ( 1)

2 2 2

1( ) ( ) { ( ) ( 1) ( ) }          (3.6)
k k k k k

k pk k k k

k k k k

m mp

m m m

k k k k k k

d
u t u t C u t C s u t

dt

  
  

   




  
  

      

By young's inequality  
'

' ''

,

q

p qp bb 


  ٍ  ٍ   

Where 
' '1, 1, 0, 0, 0p q b    >  ٍ  and 

1 1
1.

' 'p q
   set 

2( ) ,
k

k

k

m

ku t




         1,kb s        

1

( 1)

1

1
,

2

k p

k









 ٍ   

( 1) ( 1)( )( 1) 2
' 2 2,

(( 1) )

k k k
k k k

k k

p s s s p p N
p l s s

N p s p 

    
      

 
  

Then we obtain 

1
11 1

(1 )( 1) ( 1)

12 2

1 1

1
( 1) ( ) ( ) ( 1)                 (3.7)

2

kk k k
k pk p lk kk k

k k

lmp

lm m

k k k k k ks u t u t C s

  
  

 
 

 

 
 

               

Here we have used the fact that ' 1kp l r    for some r independent of k. in fact, it is easy to verify that  

lim .k
k

l


    

Donate  

( 1)
,

1

k
k

k

p l

l






    11

,
1

k
k

k

p
b

l









  

And combining (3.7) with (3.6) we have  

1

( 1) ( 1) ( 1)

2 2

1 1( ) ( ) { ( ) ( 1) } .           (3.8)
2

k k k k k

k pk k k kk k

k k

m m

bm m

k k k k k k

d C
u t u t u t C s

dt
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Then  

1

( 1) ( 1)

2 2

1 1( 2) ( ) ( ) ( 2) .                    (3.9)
k k k k

k p
k Kk k

k k

m

bm m

k k k k k k

d
m u t C u t C m

dt

   


 

 
 



 
 

                         

From the periodicity of ( )ku t   , we know that there exists 0t  at which ( )
k

ku t


 reaches its maximum and thus the 

left hand of (3.9) vanishes. Then we obtain  

1

1( 1)

1( ) { [( 2) ]} ,
k p

k k

k
k k ku t C m




 








   

Where 

( 1)
.

2 2

k k k k
k

k k

m lp

m m

 





  

 
 

Therefore we conclude that  

1

1

(1 )( 2)21( 1)

( 1)

1 1( ) { ( 2) } { ( 2) }

k k pk

k k p
k k k k k k

k

mm
b

l l

k k k k ku t C m C m


 



   


 





 




       

Since 
2

( 1) 1

k k

k k

m

l 








 
 , 

2k

k k

m

l


 and k  are bounded, we get  

1(1 )

( )'

1( )

k p

k

k

pk

k ku t Cp

 










  , 

Where ' 1   is a positive constant independent of k, as 
( 2)k

k

k

p m
p

m p



 


 implies that 

1 1(1 ) (1 )

( ) ( )

k p k p

k

p
p p p

   

 

  
 

 
 and 1 1,k    then we have  

1( )
k

k p

k ku t CA


   

Or 

1ln ( ) ln ln ln ln ,
k

k k ku t C k A p


       

Where 
'

1.A p   Thus 

2 2
1

0 0

ln ( ) ln ln ln ( ( ) )
k

k k
i k j

k

i j

u t C p p A k j p



 



 

       

                     
1 1( 1) ln ln ( ) ln ,k kp C p f k A       

Or 
1

1

1

1

2
( ) { ( )}

k

k
k

k

pp

m ppp

k m
u t C Af k










    

Where  
1

2

( 1) 2
( ) .

( 1)

k kk p k p p
f k

p

   



  

Letting k   , we obtain  

1 1

2
( ) (max{1,sup ( ) }) .p p

t

u t C C u t  


                                               (3.10) 

On the other hand, it following from (3.3) with m=0 that  

2 2

1 22 2
( ) ( ) ( )

p

p

d
u t C u t C u t

dt
                                                            (3.11) 

By Holder's inequality and sobolev's theorem, we have  
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1 1 1 1

2 2
2

( ) ( ) ( )p p
p p

u t u t C u t
 

                                                   (3.12) 

Combined with (3.11) , it yields 

2 2

1 22 2 2
( ) ( ) ( ) .

pd
u t C u t C u t

dt
                                                           (3.13) 

By young's inequality, it follows that  

2

1 22 2
( ) ( )

pd
u t C u t C

dt
                                                                         (3.14) 

Where ( 1,2)iC i   are constant independent of u. Taking the periodicity of u into account, we infer from (3.14) that  

2
( ) .u t C   

Which  together with (3.10) implies (3.1). The proof is completed. 

Corollary 1 There exists a positive constant R independent of ε, such that  

deg( (1,( [ ]) ), ,0) 1,RI G m u u B 

     

Where RB  is a ball centered at the origin with radius R in ( ).TL Q
  

Proof it follows from Lemma 2 that there exists appositive constant R independent of ε, such that  

( ( [ ] ),u G m u u                     ,Ru B         [0,1].    

So the degree is will defined on RB . from the homotopy invariance of the Leray-schauder degree and the existence 

and uniqueness of the solution of G(1,0) , we can see that  

deg(1 (( [ ] ), ,0) deg(1 (1, ( [ ] ), ,0)R RG m u u B G m u u B           

                                                deg(1 (1,0), ,0)RG B    1.   

The proof is completed. 

Lemma 3 There exist a constants 0r   and 0,   such that no non-trivial solution u  of the equation, 

(( [ ] )G m u u 

  satisfy   

( )
0  ,

TL Q
u r    

Proof By contradiction , let u  be a non-trivial solution of (( [ ] )u G m u u  

   satisfying 
( )

0  ,
TL Q

u r    

For any given 0( ) ( ),x C    multiplying (2.5) by 

2

u 


 and integrating over 

*

0( ) (0, ),TQ B x T   we obtain: 

*
*

*

22 2
2

2

2

1

(( ( ) ) ( ) ( ))                              (3.15)

( [ ]) .

TQT

T

p

Q

Q

u
dtdx B u u B u u dtdx

u t u

m u dtdx


   

 

 


 




    


  

 



  

Due to the periodicity of u  with respect t we have  

*

2
2 (ln )

0.

T

T

oQ

u u
dtdx dtdx

u t t

 








 
 

                                                                             (3.16) 

The second term on the left –hand side in (3.15) can be rewritten as  

*

2 2
2

2(( ( ) ) ( ) ( )

T

p

Q

B u u B u u dtdx
u
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*

2
2

2(( ( ) ) ( ) ( . ))

T

p

Q

B u u B u u dtdx
u

   




 



      

*

2
2

2(( ( ) ) ( ) ( ( ) ))

T

p

Q

B u u B u u dtdx
u u

   

 

 
  



        

*

2
2 22(( ( ) ) ( ) ( )( ( )))

T

p

Q

B u u B u u u dtdx
u u

    

 

 
 



         

*

2
2

2(( ( ) ) ( ) ( )

T

p

Q

B u u B u u dtdx
u

   








                                                                 (3.17) 

*

2
2 2

2(( ( ) ) ( )

T

p

Q

B u u B u dtdx   


      

*

2
2

2(( ( ) ) ( )( ) ( )

T

p

Q

B u u B u u u dtdx
u

    




  



         

*

2
2 2

2(( ( ) ) ( )

T

p

Q

B u u B u dtdx   


      

*

2
2

2 22(( ( ) ) ( ) ( )

T

p

Q

B u u B u u dtdx
u

   








      

Thus: 

*

2 2
2

2(( ( ) ) ( ) ( ))

T

p

Q

B u u B u u dtdx
u

   








                                                                (3.18) 

*

2
2 2

2(( ( ) ) ( )

T

p

Q

B u u B u dtdx   


      

Combining (3.16) with (3.15)(3.18) , we obtain  

*

2
2 22 2

1 ( [ ]) (( ( ) ) ( )

T t

p

Q Q

m u dtdx B u u B u dtdx      


                                  (3.19) 

Let 1  be the first eigenvalue of the p-Laplacian equation on   with zero boundary condition and 1( )x  be the 

corresponding eigenfunction, we have:  

1 1 1

p p
dx dx  

 

                                                                                                      (3.20) 

From theorem 5.1 and also some remarks in [[10].pp.238, 243], it follows that there exists a constant ( , )N P   

such that 

0 0 0
0 0 0

1 1
2 2

0
0 0 1

1 1 1[( , ) ( , )]
[( , ) ( , )]

2 2

1
( ) ( , , , , ) ( )

2 4
sup

p
p

x t Q r p
x t Q r p

a
B u u C N p r a B u u dtdx   








   
          

   

For any 0 0 ( ,3 ) 0 0 0( , ) ( ,3 ),[( , ) ( , )]T Tx t Q T T x t Q r p    and 
0 0

6

2

min ,

2
p

r
p T




 
 

  
  

 On the other hand, by (2.2) 

with (2.4) , we have  
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1 2
( ) max ( , ) ( ) .

T

T T

p m

Q
Q Q

B u u dtdx x t u u dtdx  


      

So  

0 0 0

1

2
1 2 0

0 0 1

1 1 1
[( , ) ( , )]

2 2

1
( ) ( , , , , ) ( )

2 4
sup

T

p
m

Q
x t Q r p

a
B u u C N p r a u u dtdx  








 
     

 
   

Which implies  

0 0

11

202

( ( , ) (0, )) ( ) ( )
1

1
( ) ( ) ( )

2 4T T

m

p

L B x r T L Q L Q

a
B u u C u u 


  






      

Where C is a constant independent of ε, from 
1

(0, )
2

   we have 
1 1 1

( )
2

m mB mu mr       By the 

approximating process, we can let 1   is the positive eigenfunction of the first eigenvalue 1  ,then we 

0

2

1

1
( , ) (0, )

2

( [ ])

oB x r T

m u dtdx 



    

0

2
2 2

2

1
( , ) (0, )

2

(( ( ) ) ( )

o

p
p

B x r T

B u u B u dtdx   






      

0
0

1 2

2 1 202 2
1

1 1 ( )
( , ) (0, )

2

1
( ( ) )( ) .

4 2
o

m p

p m

B x
B x r T

a
C r r mr dx



 


 

 



                                 (3.21) 

On the other hand  

2

1 ( [ ])a u dtdx 


    

2

22

1 ( )
L

m k u dtdx 


                                                                                          (3.22) 

2

0

22

1

( ) 0

( )

T

L

B x

m k u dtdx



       

2 2

0 1

( )

( .

oB x

T m kr dx



        

Where   denotes the Lebesgue measure of the domain   , and then we obtain  

1

1 2

2 2 102 2
0 1

1
( ( ) )( ).

4 2

m p

p ma
m kr C r r mr  

 

                                         (3.23) 

Obviously if we let 

11

20 021

1

1 1
min ,( ) , ( ) ,1

2 4 2 4

pm
m m

r
m k C



  
  

  

                                                                   (3.24) 

We can get 

0 0 0 0 0
0

3
( ) .

4 4 4 4 4

    
        

This inequality does not hold. Therefore there exists one positive constant r > 0, such that no nontrivial solution u  of 

the equation (( [ ]) )G m u u 

  satisfy 
( )

0  
TL Q

u r     

Thus we complete the proof. 

Corollary 2 There exists a small positive constant r  which is independent of   and satisfies r R   such that 
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deg( (1,( [ ]) , ,0) 0,rI G m u u B 

     

Where rB  is a ball centered at the origin with radius r  in ( )TL Q
 . 

Proof same way for lemma 3, we can see that there exists a positive constant o r R   

independent of  , such that: 

( ,( [ ]) 1 ), , [0,1].ru G m u u u B              

Thus the degree is well defined on rB  , By Lemma 3, we can easy to infer that (0,( [ ] )u G m u u    admits no 

solution in rB  , Then by homotopic invariance of the Leray-schauder degree , we get 

deg( (1,( [ ] ), ,0) deg(1 (0,( [ ] 1), ,0) 0.r rI G m u u B G m u u B   

          

The proof is completed. 

Now we show the proof of the main result of this paper. 

Theorem 1 if assumption (B1),(B2) hold then the 

problem (1.1)-(1.3) admits a nontrivial nonnegative 

periodic solution u  . 

Proof Using corollaries 1 and 2 , we have  

deg(1 ( (.)), ,0) 1,G f     

Where \ ,R rB B B   is a ball centered at the origin 

with radius ( )TL Q   , R and r are positive 

constants and R > r . By the theory of the Leray-

Schauder degree and Lemma 1, we can conclude that 

problem (2.2)-(2.4) admits a nontrivial nonnegative 

periodic solution u  By Lemma 3 and a similar 

method to that in [11], we can obtain  

( )
,P

TL Q
u C               

u
C

t





  

Combining with the regularity results [10] a similar 

argument to that in [11], we can prove that the limit 

function of is nonnegative nontrivial periodic solution 

of problem (1.1)-(1.3).  
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 الحل الدوري لصنف معادلة القطع المكافئ ذات الاضمحلال المضاعف مع شروط نيوتن الحدودية
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 الخلاصة:
لقد تم في هذا البحث , دراسة  الحل الدوري لصنف من معادلات القطع المكافئ ذات الاضمحلال المضاعف مع شروط انيومن الحدودية 

 ولقد حصمنا  عمى وجود لمحل الدوري غير التافه.  Leray-Schauder degree.وبااستخدام  نظرية  
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