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ABSTRACT

The Fourier transformations have stimulated many amounts of articles in recent years.
they arise in the fields of engineering, control systems, and technology like analyzing signals
in electronic circuits, radio circuits, cell phones, image processing, and in solutions to heat
transfer equations, Airy equations, Telegraph equations, Duffing equations, Wave equations,
Fisher equations, Laplace equation, etc. In this paper, a new iterative method called
Adomian Decomposition Method (ADM) is implemented to obtain the Fourier transform of
functions by solving a linear ordinary differential equation of first order. This method
focuses on finding Fourier transforms by knowing the series resulting from Adomian
polynomials. Five famous examples are presented to test the effectiveness and validity of
this technique. The results indicate that the accuracy of this method is fully in agreement
with the classical method. Furthermore, when applying the Adomian decomposition method,
we noticed that it provides accurate results and does not require a lot of time and effort to
obtain Fourier transforms of the functions because it does not require a large number of
iterations.

Introduction

The topic of integral transformations is one of the

important topics used in solving many physical and
engineering problems [4,5,7,9,10,11,13]. One of these

Definition 3. [16] The Dirac delta distribution is limit
for € — 0 function defined by

transformations is the Fourier Transform, this transform

decomposes complex signals and converts them into
sinusoidal components, these signals can be expressed
by the frequency of waves [14,15].

, O0<t<e

, t>¢

[=N=N NN

Definition 1. [2] The Fourier Transform of g(v)

denoted by F is given by

v=00

Flg(v)] = f g(v) e dv = G(w)

v=—00

Definition 2. [2] The inverse Fourier transform of g(w)

is given by

1
T2

FHI] = 5= | 90w €™ dw = gw)
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Thatis 6 (t) = limg  8:(t).

Some properties of the Dirac Delta distribution
are as follows [8, 16]:
o, w=0
Lo o(w) ‘{0, w;eo}'
. [0 e gy = 2n§(w + b), for b € R.

Recently, Fourier transforms of functions have
been calculated using different methods. Duz. et al [1]
have implemented the Differential transformation
method for computing Fourier transforms. Issa. et al [2]
have solved Fourier transforms by using the variational
iteration method. In this article, we will introduce
another technique (Adomian decomposition method) for

calculating Fourier transforms of functions with linear

ODEs of the first order as shown
y' —iwy =ig(v),w €C, y(0)=0 (1)
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and we will provide some important examples to
demonstrate the efficiency of the proposed method.

Table 1: The Fourier transforms of functions

g(v) Flg(w)]
1 2nd(w)
vm 2mims™ (w)
e 2nd(w + ai)
sinav %(S(W—a)—8(w+a))
cos av (6(w—a) + §(w + a))

Applying Adomian decomposition method to
Equation (1) :

Now we let apply the Adomian decomposition
method [3,12] to equation (1)

Yy —iwy =ig(v)

d
Ly =i i ) L =—
y =iwy +ig(v) I

L'y = LY Gwy) +iL7Y(g(v)), L'= f dv

Yn+1 = iWL_l(Vn)
Yo =v(0) +iL™*(g(v))
Y1 = iwL ' (yo)

Y2 = iWL_l(Yl)

Y3 = WL (y2)

As usual in Adomian decomposition method the solution
of Eq. (1) is considered to be as the sum of a series:

Y = Zyn
n=0

Theorem 3.1 : Consider the linear ordinary differential
equations of first order as shown
Y —iwy=iglv),weC, y(0)=0 (1)
Moreover, let g(v) be an analytic function, then
the Fourier transform of g(v) is

e—iwv d
Flgw)] = | = Zy] . @)
n=0
Where y,’s is obtained with the Adomian

decomposition method from equation (1).
Proof : we let solve the equation (1)
y' —iwy =igv), A =elwdv — p-iwv
(ve™ ‘W”) =ig(v)e~
Integrating both sides from —oo to co with respect
to v, we get the relation between the solution of equation
(1) and Fourier Transform of g(v) as

iwv

Journal of University of Anbar for Pure Science (JUAPS)

356

Open Access

[ee)

Jim Jim ye g =i | gw)e v = Flg(w)]
Therefore, -

Flo(w)] = % = _Wzyn] =
Examples : "

In this section, we will use the Adomian
decomposition method to get the Fourier Transforms for
some important functions
Example 1. Let g(v) =1, and by using equation (2),

we have
[ - Z yn] 122 3)

Now we find some of V'S
Yo =v(0) +iL7'(D),
Yo = v
Civ? iPwr?
Vi=iw o =—
_Pwrivd Pwy
Y2 = 6 ~ T 6

Yn+1 = iwL™! (Yn)

Y3 = 24

iSwhps

120

V4 =

in+'1wnvn+1
(n+ 1)
Finally, we get the Fourier transform of 1 by

substituting the previous equations in (3)

—zwv
zyn ="
—LWU iZWUZ i3W2173
= : [w+ +

2 6
wi3p?t
o e

[

[1 _ e—iwv]
v=00 _
3 v=—00

w
o0
—o0

Yn =

Fl] =

i4
V=00

+

v=o00
v=—00

e—lWU
—iw

e M dy = 2ns(w).

v=00
v=—00
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Example 2. Let g(v) = v™, and by using equation (2),

we have
e—iwv ®
Flv™] = [ - Z
' n=0
Now we find some of y,,’s
Yo =v(0) +iL™*(v™)

] v=—co (4)

vm+1
o=t + 1
Yn+1 = WL ()
ivm+2 iZWUm+2
yl = lW =
(m+1D(m+2) (m+1D(m+2)
i3W217m+3
V2= tm+ D(m + 2)(m + 3)
i4w3vm+4
V3= tm+ Dm+2)(m + 3)(m + 4)
15W4vm+5
Va = n+ D(m+ 2)(m + 3)(m + 4)(m + 5)
15W4 m| Um+5

~ (m+5)!

in+1WT.l m! vm+n+1
Yu = (m+n+1)!
Finally, we get the Fourier transform of v™ by

substituting the previous equations in (4)

e—iwv © _
Flv™] = ; Z Y| 19=20

n=0
|:e—lWl7 [ pmtl

iZWUm+2

+ (m+1)(m+2)

m+3

l(m +1)

N idw?v

m+1D(m+2)(m+3)
i4W3vm+4

T T Dm+ 2+ 3)m+4)
l'5 m+5 ]

N wim! v
(m+ 5)!

v=o00
v=—00

m+2 i3W2m! vm+3
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i‘wm! v
i +
(m+ 1)! (m+ 2)!
4.3

*w3m!l vt Swiml v
(m+ 4)! (m + 5)!

+]

(m + 3)!
m+5

e~ W[ mi pmtl
[

v=00
v=—00
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e ™Wrr iml . _ (iwv)?
= [ i (iw)m“] [e“"”’ —-1—iwv - T
B (iwv)™ peoo
m! v==
21 (_1)m+1ime—iwv pm
T Cpmim [ 2 <W
my™m1 m!
et ot —— | [%2%
(iW)Z (iW)m"'l)] v=
= 2mi™m§ ™ (w).

Example 3. Let g(v) = e®”, and by using equation (2),

we have
e—iwv had
T[eav] =[ i Zyn] v——oo (5)
n=0

Now we find some of y,,’s

[
Yo =v(0) +il™H(e®) = Ee‘“’

Yn+1 = iWL_l(yn)
iwlL™ (i ‘“’) = iz—we
Y1 = a - az

7 -1 iZW av i3W2 av
Y, = iwl ?e =—e

av

a3
i*w? -
Y3 =—4"¢€
at
Sw* -
Va = e

a’

Finally, we get the Fourier transform of e%V by
substituting the previous equations in (5)

Fle® —[ _WZVn] V=0

e—lW‘U i l'2 i3W2 i4W
—+—+ +

3

i a a? asl a*
LSW4 av v=0co
+ P +-Je p=—c0

—l(w+a1)v
[

—i(w + ai)
= j e~ iwHadv gy, = 208(w + ai).

Example 4. Let g(v) = sinav, and by using equation
(2), we have
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Flsinav] =

Now we find some of y,,

—iwv
e

; i ]v——oo (6)
n=0

b

N

1 . )
Yo = y(0) + iL Y (sinav) = iL™?! <z (eiav — e—lav)>

— %L—l(eiav _ e—iav) —

Yn+1

2ia

1 (elav+e—1av)

= iwL 1 (y)

1, . .
Y1 = iwlL™1 <m (elav + e—mv))

= 5122 (

w ; .
Vo = iwlL~1 <2ia2 (elav _ e—LaU))

2

iav —iav

— ﬁ(eiav + e—iav)
3
Y3 = W( iav __ e—iav)
4
Ve =

Finally, we get the Fourier transform of sin av by

2ia’

iav —iav
(e +e )

substituting the previous equations in (6)

Fsinav] =

2ia’

—iwy 2
- Z
i
n=0

3 e"Wrl/ 1 N w? N w
N 2ia  2ia3

4

W3

Vn] ="

+ ) (eiav + e—iav)

5

+ (s +
2ia?

2ia*

+ w + Ve (eiau
2ia®

o]

1 e—i(w—a)v —l(w+a)v

~ 2 i(a—w) + i(a+w)

=

— ll J (e—i(w—a)v _ e—i(w+a)17) dv

T
= 7(6(W —a)—6(w + a)).

1k <v<
Example 5. Let g(v) = rect(v) = {b' 2= 7 T2
0, otherwise

and by using equation (2), we have

Flrect(v)] = [

—iwv

>

n=0

] v=—s0 (7)

2},
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Now we find some of y,,’s

Yo = y(0) +iL™* (%) Yne1 = WL (1)
[
Yo = EV
iv? i Zwrp?
T 25~ 2b
i‘w?ivd  i3w?vd

Y2 =%} 6b
i*w3p*
24b

Swps

Y4 = 1%0b

Y3 =

in+.1wnvn+1
"= T+ 1)
Finally, we get the Fourier transform of rect(v)

by substituting the previous equations in (7)

Flrect(v)] = Zyn] =20
—va i WU i3W2173
~ [E”+ 26 " 6b

1725

‘w3t
+ + . |

24b

_ e—iwv eiwv_l V=g _ 1_e—iwv ”=g
| ib w |‘U=—2_ ibw Iv:—é

2

. (bw
= —b_w = sinc (§>
2
The formula of sinc function in [6].

Conclusion

In this paper, we have dealt with the Fourier
transform and important definitions and properties of it.
Furthermore, the application of the Adomian
decomposition method to calculate the Fourier transform
of functions has been demonstrated, which are important
transforms in applied mathematics.
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