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         This paper surveyed the components of Riemannian curvature tensor over 

the associated space of G-structure for certain classes of almost contact metric manifolds. 

These classes under consideration are only twelve and known as cosymplectic manifolds, 

Sasakian manifolds, Kenmotsu manifolds,   -manifolds,    -manifolds, normal 

manifolds of Killing type (CNK-manifold), nearly Kenmotsu manifolds, locally 

conformal almost cosymplectic manifolds (LCAC-manifolds), quasi-Sasakian manifolds, 

almost  ( )-manifolds, nearly cosymplectic manifolds, and Kenmotsu type manifolds. 
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Introduction  

The Riemannian curvature tensor (RC-tensor) is 

one of the interesting fields in the studying differential 

geometry. The Riemannian manifold of flat RC-tensor is 

locally isometric to the Euclidean space. Also, RC-

tensor win its importance in the gravity theory and 

general relativity theory because its contraction is the 

Ricci tensor that a central mathematical tool in 

Einstein’s theory. Based on the above, many authors 

studied RC-tensor of the manifolds and specially the 

almost contact metric manifolds that classified by D. 

Chinea and C. Gonzalez [1]. Especially among them, E. 

S. Volkova [2] determined the components of RC-tensor 

of CNK-manifolds. S. V. Umnova [3] established the 

components of RC-tensor of Kenmotsu manifolds and 

generalized Kenmotsu manifolds (nearly Kenmotsu 

manifolds). V. F. Kirichenko and A. R. Rustanov [4] 

deduced the components of RC-tensor of quasi-Sasakian 

manifolds. N. N. Dondukova [5]. 
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 found the components of RC-tensor of 

cosymplectic manifolds and Sasakian manifolds. S. V. 

Kharitonova [6]. 

Concluded the components of RC-tensor of 

LCAC-manifolds. V. F. Kirichenko and E. V. Kusova 

[7] studied the components of RC-tensor of weakly 

cosymplectic manifolds (nearly cosymplectic 

manifolds). 

     So, according to the previous, we summarize these 

results in this paper and more than ones to have a survey 

about the RC-tensor of almost contact metric manifolds. 

 

Preliminaries 

Definition 1. [8] A topological space     is said to be a 

smooth manifold of dimension     and denoted by    , if  

   is     space, second countable, locally 

homeomorphic to    , and has a smooth structure. 

The symbol   ( ) denotes to the module of 

whole vector fields on    . 
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Definition 2. [8] A bilinear map      ( )   ( )  

  is said to be a metric tensor on    , if     is symmetric 

and positive definite.    

Definition 3. [1] If a Riemannian manifold  (       ) 

is provided by triple of a structure tensor (     ), where 

        are tensors over   of types (1, 0), (0, 1), and (1, 

1) respectively, such that          ( ), the 

following achieved:  

 ( )                 ( )                     

 (       )   (  ) (  )   (     )  then it is 

known an almost contact metric (ACM-) manifold and 

denoted by (             ). 

Definition 4. [8] A connection on a smooth manifold   

is a mapping     ( )   ( )   ( ) defined by 

 (        )          and it attains the subsequent 

properties: 

(1)                               ; 

(2)     (         )                  

                                         (    )     (    )  , 

for all         
 ( )  and            ( ). 

Lemma 1. [8] Suppose that    is a connection over    

and       ( ). If     , or       then       . 

Definition 5. [8] A Riemannian connection over the 

Riemannian manifold (   ) is a connection   on   that 

possess the following properties: 

(i)                ,     -, where 

                 ,     -             ; 

(ii)   ( (     ))   (        )   (        ), 

for all            ( ). 

There are several classes of ACM-manifolds 

(             ). We define some of these classes 

according to their Riemannian connection as the 

following: 

Table 1. Some defining classes 

Classes Defining conditions 

Cosymplectic [9]    ( )     

Nearly cosymplectic 

[10] 
   ( )      ( )     

Kenmotsu [11] 
   ( )    (      ) 

   (  )    

Classes Defining conditions 

Sasakian [12]    ( )    (  )    (     )  

   [13] 
   ( )    (  )     

  (        )  

    [14] 

  (  ){ (  ) (   )

  (       ) }

    ( )   

    [2] 
Normal and 

    ( )      ( )     

Nearly Kenmotsu 

[15] 

   ( )      ( )   

   (  )    
  (  )    

Kenmotsu type [16] 
   ( )    (  )    

     ( )    

 

for all        ( ), where   refer to Riemannian 

connection. Moreover, an ACM-manifold 

(             ) is called normal if          

 , where for all       ( ): 

 (   )  
 

 
(,     -    ,   -   ,    -

  ,    -)  

is the Nijenhuis tensor of the structure tensor   (see 

[2]). 

Definition 6. [6] An ACM-manifold (             ) 

is bearing an almost cosymplectic manifold if          

and        , where  

                (     )   (      ) and 

   (     )     ( )      ( )   

   (        )     ( )(     )     ( )(     )
  

              ( )(     )     for all            ( ). 

Definition 7. [6] An ACM-manifold (             ) 

is bearing a LCAC-manifold if the ACM-manifold 

(       ̃  ̃    ̃) is an almost cosymplectic manifold, 

where  ̃     ( )    ̃     (  )    ̃  

   (   )   and     is a smooth function. 

Definition 8. [17] An ACM-manifold        is known 

as quasi-Sasakian manifold if        and     is 

normal. 

Definition 9. [8] An RC-tensor of type (3, 1) on a 

Riemannian manifold (   ) is a tensor    ( )  
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 ( )   ( )   ( ) that defined by  (     )   

([       ]   ,     -)    for all           ( ), 

where   is Riemannian connection over   . Furthermore, 

the RC-tensor    of type  (4, 0) is given by the formula  

 (           )   ( (     )     ), with     

 ( ). 

Definition 10. [18] The associated space of G-structure 

for an ACM-manifold (             ) is a set of all 

A-frame (                   ̂       ̂), where    , 

   
 

√ 
.   √   (    )/,   ̂  

 

√ 
.   

√   (   )/,            ,  ̂      and *      

            ̂       ̂ + is a basis of   ( ) which 

satisfies  (       )     , for all                . 

Lemma 2. [19] Suppose that (             ) is an 

ACM-manifold and   its RC-tensor of kind (4, 0) with 

components       on the associated space of G-

structure. Then the subsequent relations are satisfied: 

(1)             ; 

(2)             ; 

(3)            ; 

(4)                    , 

where                    . 

Definition 11. [20] An ACM-manifold 

(             ) is said to be an almost  ( )-manifold 

if its RC-tensor     fulfill the following identity: 

 ( (     )     )

  ( (       )     )

   *  (     ) (     )

  (     ) (     )

  (      ) (      )  

  (      ) (      )+  

where              ( ), and    . 

Moreover, a normal almost   ( )-manifold is said to be  

 ( )-manifold.  

 

The Components of Riemannian Curvature Tensor 

on the Associated Space of G-Structure 

In this section, we review the ingredients of RC-

tensor on the associated space of G-structure for certain 

classes of ACM-manifolds. 

Theorem 1. [5] The components of RC-tensor of 

cosymplectic manifolds are given by:   ̂   ̂     
    and 

the other components are vanish or given by Lemma 2, 

or their conjugates, where    
   are smooth functions 

satisfy    
,  -
  ,  -

    . 

Theorem 2. [5] The components of RC-tensor of 

Sasakian manifolds are given by: 

1.   ̂   ̂     
      

   
    

   
 ; 

2.   ̂ ̂      
     

   
    

   
 ; 

3.   ̂      
 , 

and the other components are vanish or given by 

Lemma 2, or their conjugates, where    
   are smooth 

functions satisfy    
,  -
  ,  -

    . 

Theorem 3. [5] The components of RC-tensor of 

Kenmotsu manifolds are given by: 

1.   ̂   ̂     
     

   
 ; 

2.   ̂ ̂      
     

   
    

   
 ; 

3.   ̂       
 , 

and the other components are vanish or given by 

Lemma 2, or their conjugates, where    
   are smooth 

functions satisfy    
,  -
  ,  -

    . 

Theorem 4. [20] The components of RC-tensor of 

almost  ( )-manifolds are given by: 

1.   ̂ ̂       
  ; 

2.   ̂       
 ; 

3.   ̂   ̂    ̂   ̂       
  , 

and the other components are vanish or given by 

Lemma 2, or their conjugates. 

Theorem 5. [13] The components of RC-tensor of   -

manifolds are given by: 

1.     ̂      
  ; 

2.            ; 

3.      ̂      
  ; 

4.   ̂   ̂     
         ; 

5.           ,  | | -, 

and the other components are vanish or given by 

Lemma 2, or their conjugates, where    
   are smooth 

functions satisfy    
,  -   ,  -

    , and     ,    ,     , 

   
    are components of Kirichenko’s fifth structure 

tensor   (see [16]) and their covariant derivatives 

respectively. 
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Theorem 6. [14] The components of RC-tensor of    -

manifolds are given by: 

1.    
          ̂   ;  

2.              ̂  ̂ ; 

3.    
     ̂   ̂,  

and the disappeared components are vanish or 

given by Lemma 2, or their conjugates, where     
   are 

smooth functions satisfy    
,  -
  ,  -

    , and    ,   , 

    ,    
   are components of Kirichenko’s sixth structure 

tensor    (see [16]) and their covariant derivatives 

respectively. 

Theorem 7. [16] The components of RC-tensor over the 

manifolds of Kenmotsu type are seemed as follow: 

1.    
    ̂   ; 

2.      
    ̂   ; 

3.    
     

    
     

      
     ̂   ̂;  

4.  (  , 
    -
    ,  -

  )    ̂ ̂   ;  

5.     
      

      
       ̂ ̂  ̂,  

and the other components are vanish or given by 

Lemma 2, or their conjugates, where    
   and     

  are 

suitable smooth functions and    
  ,    

  ,     
  ,    

     

are components of Kirichenko’s first structure tensor   

(see [16]) and their covariant derivatives respectively. 

Theorem 8. [6] The components of RC-tensor of LCAC-

manifolds are appeared as follow: 

1.  .    
      ,   -

    ,  , 
 -
  -  /    ̂   ; 

2.  .  , 
, 
  -
 -
  , 

   -
   
           /    ̂ ̂  ; 

3.    
               

,   
 -
 ,   -

    
   
   
  

         ̂   ̂; 

4.  (  , |  | -    ,   -    ,   -  )       ; 

5.  .  ,   -
    ,  , 

 -
  -   

      /    ̂   ;  

6.   
      

    
     

     ̂  ̂ ; 

7.                     ; 

8.    
         

     
   
         

  

  ,   
 -
     ̂   ;  

9.     
            

             

  ̂  ̂ ,  

and the other components are vanish or given by 

Lemma 2, or their conjugates, where     
  ,    

     and  

    
  are suitable smooth functions,     ,     ,      , 

      are components of Kirichenko’s second structure 

tensor   (see [16]) and their covariant derivatives 

respectively,    ,    ,  
    are the components of 

Kirichenko’s third structure tensor   (see [21]) and their 

covariant derivatives respectively,   ,   ,    are the 

components of   ,   
 ,     are the components of     , 

and     ,     are the components of     . 

Theorem 9. [4] The components of RC-tensor of quasi-

Sasakian manifolds are given by: 

1.   ̂   ̂     
      

   
    

   
 ; 

2.   ̂       
 ; 

3.   ̂   ̂    
  ; 

4.   ̂      
   
 ; 

5.   ̂ ̂     , 
   -
 , 

and the other components are vanish or given by 

Lemma 2, or their conjugates, where    
   are smooth 

functions satisfy    
,  -   ,  -

    , and   
 ,   

  ,    
 , 

are components of Kirichenko’s fourth structure tensor 

  (see [16]) and their covariant derivatives respectively. 

Theorem 10. [2] The components of RC-tensor of CNK-

manifolds are given by: 

1.   ̂         
 ; 

2.   ̂   ̂     
      

    
     

    
      

     
  ; 

3.   ̂        
   , 

    - 
  ; 

4.   ̂      
    

  ; 

5.   ̂ ̂    (  ,  -
    , 

    -
  ); 

6.   ̂ ̂      
 , 
   
 - 

, 

and the other components are vanish or given by 

Lemma 2, or their conjugates, where    
  ,     

  are 

suitable smooth functions,   
  ,    

   are the components 

of Kirichenko’s fourth structure tensor   and their 

covariant derivatives respectively, and    
  ,    

  ,     
   

are the components of Kirichenko’s first structure tensor  

  and their covariant derivatives respectively. 

Theorem 11. [15] The components of RC-tensor of 

nearly Kenmotsu manifolds are given by: 

1.   ̂     
 

 
  
     

 

 
  
     

 

 
  
    ; 

2.   ̂   ̂     
            

 

 
         

   
 ; 

3.   ̂ ̂     
         

        , 
   -
 ; 

4.   ̂ ̂ ̂ ̂   
     

 

 
(              

      ); 

5.   ̂     
        

 , 
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and the other components are vanish or given by 

Lemma 2, or their conjugates, where    
   are suitable 

smooth functions,    ,     are the components of 

Kirichenko’s fifth structure tensor  , and     ,     , 

      are the components of Kirichenko’s second 

structure tensor   and their covariant derivatives 

respectively. 

Theorem 12. [7] The components of RC-tensor of nearly 

cosymplectic manifolds are given by: 

1.            ,  -; 

2.   ̂ ̂      
       ; 

3.   ̂     
     ; 

4.   ̂   ̂     
            

 

 
      , 

and the other components are vanish or given by 

Lemma 2, or their conjugates, where    
   are suitable 

smooth functions,    ,     are the components of 

Kirichenko’s third structure tensor  , and     ,     , 

      are the components of Kirichenko’s second 

structure tensor   and their covariant derivatives 

respectively. 
 

Conclusions 

This paper collected the theories that determined 

the components of RC-tensors for 12 different classes of 

ACM-manifolds. So, the readers can be recognized the 

difference among these classes from the theorems in this 

paper. Then we concluded that the RC-tensor distinct 

according to its class.       
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