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ABSTRACT

set via supra

The purpose of this article is to provide a new set which is supra semi preopen

topological space (X, My ). with the help of some examples and properties. Also, some of
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their properties have been investigate. With we illustrate the relationships between this
concept and supra preopen set (respectively, supra open set).

Also, we define two spaces which are supra semi pre compact and supra semi pre
Lindelof spaces with the relationships between them. At the end of this work, we provide
some examples, properties to support this work.

1-Introduction

In 1983, Mashhour [ 1] introduced the concept of
supra topological space, which is, for any set X # @,
and the collection My of subset of X that @ and X
belong to My, also arbitrary union of elements of My is
an element in M,. The pair (X, My )is called supra
topological space (briefly, su.top.sp), and the elements
of My are said to be supra open ( briefly, su.o) sets and
its complements are supra closed ( briefly, su.c) sets.
Also, he presented the relation between this concept and
topological space ( for short top. sp.) which is (Every
top.sp is su.top.sp). The auther in [2], the concept of
supra interior was defined, the supra interior of a subset
A of supra space (X, My ), which is su.int (A) =U{U:
Uc A , where U € M}, and supra closure of A,that is
su.cl (A) =n{F: A S F , where F¢ € My},

After then in 2010, Sayed [3] provided a new
concept which is supra preopen (respectively, supra pre
closed) set, briefly, su. pr.o (respectively, su. pr. c) set,
such that A is su.pr.o if A < su.int (su.cl(A)).
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The complement of a su. pr. o set is said to be
su.pr.c, The collection of all su. pr. o (respectively,
su.pr.c) sets of X is denoted by supr.o (X)
(respectively, su. pr.c ( X)). And this author defined,
The union of all su.pr.o (X) set contained in a subset A
of su.sp. (X, My ) is su.pr.interior of A and we denotel
by su.int, (A). Also, The intersection of all su.pr.c (X)
sets containing A is said to be su.pr closure of A and
we denoted by su.cl, (A). It is well known that top. sp
and su. top. sp have been generalized and studied in
many ways (see for example, [4], [5], [6]).

In 2020, Al-Shami and others [7], presented the
concept of supra pre compact and supra pre Lindelof
spaces with many properties, examples and theorem
with the relationships between these two spaces.

In this work, we provide a new concept which is
supra semi” preopen (briefly, su. s* pr.o) set in su.top.sp
and the fact that is "every su.o set is su. s* pr.o set ", but
the convers is not true, also the relation between su. pr.o
set and su. s* pr.o set, see ( Remark 2.2, part(2)) in this
research, Finally, we provide anew spaces namely su. s*
pr. compact and su. s* pr. Lindelof spaces (briefly, su. s*
prcom and su. s* pr. Lin) with some properties,
examples for these spaces.
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2- supra. s*pre. open set

At 2002 ,Veera Kumar [8], introduce the
concept semi- pre-open set. By the same context via
supra topology, we define the following: -
Definition 2. 1: - A subset A of su. sp (X, My ) is said
to be su. s*pr. o, if there exists su. pr.o set. G, such that
G € A csu.clyA)
Remarks 2. 2: -
1-Every su. o set. is su. s*pr. o set. but the converse may
be not true.
2- Every su. pr.o set is su.s*pr.o set , but the convers is
not true.
Example 2. 3: - In su. indiscrete sp. (R, M;,4 ), the set
of all rational numbers is su. s*pr. o set. but not su.o set.
Example 2. 4: - Let
X ={1,2,3}, My = {0,X,{1},{3},{1,3},{2,3}}.
Then, M€ = {0, X ,{1},{2},{1,2},{2,3}}
the su.pr.o(X) = {0, X, {1},{3},{1,3},{2,3]}
and su.s*pr. o (X) = {9, X,{1},{3},{1,3},{2,3},{1,2}},
we note that {1,2} is su.s*pr. o set but not su. pr. o set.
Proposition 2. 5: - The union of any family of su. s*pr.o
(X)issu.s*pr.o (X)
Proof: - Let {A4,},cq be a family of su su. s*pr. o set of
X, so there exists pr.o subset {U,},cq such that U, <
Ay <cl, (Uy) , for each aeQ.
Also, from (theorem2 [3]) Ugecq Uy € Ugea 4y S
Ugeasu.cl (U,) <sucl(Ugea Uy)
Then, Ugeaf Ay} 1S SU.s™pr. 0 set.
Corollary 2. 6: - The intersection of any family of su.
s*pr.c (X) is su.s*pr.c (X).
Proof:- Let {F,},co be su.s*pr.o sets, by (theorem2 [3]),
we get Uyecaf X —F,} be su.s™pr.o set, but U,co{ X —
Fa} =X - naeQ{Fa}!
SO X — (X — Ngeai{Fa)= Ngeai{Fa}issu.s™pr.cl (X).
Remark 2. 7: - The intersection of two su. s*pr.o sets
is may be not su.s*pr.o set.
Example 2. 8: | n (Example2.4) the intersection of two
su.s*pr.o sets {1,2} N {2,3} = {2} is not su.s*pr.o set.
Proof: - Suppose A is su. pr.o set and A S A <
su.cly(cA), then it is su.s*pr.o set .
Proposition 2. 9: - A subset F of su.sp (X, My ) is
su.s*pr.c set if and only if F =su.s*pr.cl(F).
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Proof: - Let F be su.s™pr.c set, the smallest intersection
of all su.s*pr.c sets which contain F is equal to F.
Therefore, F = su. s* pr.cl (F).

Conversely, since su.s*pr.cl(F) always su.s*pr.c set, by
corollary (2.6), Then, F is also su.s*pr.c set.

Corollary 2. 10: - For a subset F of su.sp (X, My ), we
have su.s*pr.cl ( su.s*pr.cl(F)) = su.s*pr.cl(F)

Proof: - Since by corollary (2.6), su.s*pr.cl(F)) is
su.s*pr.c set, then by (proposition 2.9), we get the result.
Definition 2. 11: - A point x € X, is said to be su.s*pr.
interior point to a subset A of su.sp (X, My ), if there is
su.s*pr.oset U withx € U € A.

Definition 2. 12: - A point x € X, is said to be su.s*pr-
adherent point to a subset Fof su.sp (X,My), if
UNF # @, where U is su.s*pr.o set containing x.
Proposition 2. 13: -For a subset G of su.sp (X, My )we
have su.s*pr.int(X — G) = X — (su.s*pr.cl(G)).
Proof:- Suppose x & X — (su.s*pr.cl(G)) ,so x €
su.s*pr.cl(G)), then for each su.s*pr.o set U containing
x, we get UN G # @, that isx is not su.s*pr. interior
point to X — G, that is x € su.s*pr.int(X — G), then
su.s*pr.int(X — G) € X — (su.s*pr.cl(G)))

Conversely, Let x & su.s*pr.int(X — @), then there is
su.s*pr.o set U containing x with U € X — G, then
UNnG # ®, so x is su.s*pr-adherent point to G, that is
x €su.s*pr.cl(G) .Hence, x & X — (su.s*pr.cl(G)), then
X — (su.s*pr.cl(G)) c  sus*pr.int(G). Hence,
su.s*pr.int(X — G) = X — (su.s*pr.cl (G)).
Proposition 2. 14: - A subset G of su.sp (X, My )is
su.s*pr.o set if and only if su.s*pr. int(G) = G.

Proof: - Let su.s*pr. int(G) = G, but the union of
Su.s*pr.o set is also su.s*pr.o set, then su.s*pr. int(G)is
su.s™pr.o set, which equal to G, then G is su.s*pr.o set.
Conversely, suppose G is su.s*pr.o set, so it is su.s*pr-
neighborhood of each its point, so su.s*pr. int(G) = G.

3- su.s™pr - Lindelof space

In this section, we introduce new concepts
namely su.s*pr-compact space (briefly, su.s*pr-com. sp)
and su.s*pr-Lindel6f space (briefly, su.s*pr-Lind. sp).
Definition 3. 1: - A su.sp (X, My )is said to be su.s*pr-
com.sp , if for each su.s*pr.o cover to X has a finite
subcover.
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Definition 3. 2: - A su.sp (X, My )is said to be su.s*pr-
Lind. sp, if for each su.s#po cover to
X has a countable subcover.

Remark 3. 3: - Every su.s*pr-com sp is su.s*pr-Lind.

sp.

Proposition 3. 4: - Every su.s*pr.c subset of su.s*pr-

Lind. sp is su.s*pr-Lind.

Proof: - Let K be su.s*pr.c subset of su.s*pr-Lind.
sp (X,My ) and C ={V, : « € Q}be su.s*pr.o cover to
K,thatisK € UyecaVy 50X S (UgeaVe ) UK€
, Where K€, is su.s*pr. o set, but X is su.s*pr-Lind.,
then X < (U;jZ;Vy ) U K€ Hence, X € U2 Vai,
then K is su.s™pr-Lind.

Proposition 3.5: -The union of two su.s*pr-Lind.

subsets of su.sp (X, My ) is su.s*pr-Lind

Proof: - Let H and K be two su.s*pr-Lind. subsets
and C = {V ,: a2 }be su.s™pr. o cover to H U K, that
is, HUK C UgcaV 4 then C is su.s’po cover to H and
K, then HE U2, Vg and KE U7Z; Vg, since H and K
are su.s"p- Lind. set. So, HUK € U{-; Vyij.

Hence, HUK is su. s"p- Lind. set.

Proposition 3. 6: -A su. sp (X, My )is su. s* p- comp.

if and only if every collection of su.spc set of X with

FIP has non empty intersection.

Proof:- Let X be su.s"p- comp. and{G,, :a.eQ }be
su.s"pc subsets of X with assume that NycoG, = 9,
then (Ngea G,)¢ = B¢, thenUyucnGE = X, but for
each aeQ, we have G, is su.s’po set, so {G§ : aeQ} be
a cover of su.s*po sets of X, which is su.s"p- comp., then
X S UL,Gg, so X€= (UL{G5)¢. Hence, @ =
N7, G4, which is a contradiction with FIP, therefore
naeQ Ga * Q)

Proposition 3. 7: - Let (X', My ) be su. sp, then every
subspace of X is su. s"p- Lind., if every su.s"po of X is
su.s'pr- Lind.

Proof: - Let H be any set in X and {S, :acQ }be
su. s’po cover to H. So, HS U,.n S, , by proposition
2.5, Uyecn Sy is sU. s°po, hence it is su. s*p- Lind. , then
Ho UgeaSe S UiZ; Sqi- Therefore, H is su. s"p- Lind..

Conclusion
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In this work, we presented a type of a set, which is
Supra semi preopen sets in supra topological spaces,
with some characteristics, examples, and theories
associated with that sets. Whoever reads this work
should consider other groups in the topological space
such as Supra m- preopen set in supra topological spaces
or Supra 0- preopen set in supra topological spaces with
proceed with the same research method to reach what is
desired.
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