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ABSTRACT

The main objective of this paper is to present random ordinary differential equations
with multi fractional derivatives and to use the homotopy analysis method to approximate
the solution of such equations with different generations of the Weiner process or Brawnian

motion. One of the most important and efficient methods for solving various mathematical
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problems with different operators, linear and nonlinear, ordinary or partial differential
equations, integral equations, and so on, is the homotopy analysis method.

1. Introduction:

Ordinary differentiation and integration are
generalized to an arbitrary (non-integer) order in
fractional calculus. The subject is as old as differential
calculus and dates back to the time when Leibnitz and
Newton invented differential calculus. As a result,
scientists and researchers in various fields of science and
engineering have been paying close attention to
fractional calculus and its applications for many years.
Furthermore, due to so many nonlinear problems cannot
be solved exactly, approximate and numerical methods
appear to be necessary and must be used [18].

Oldham and Spainir [16], who wrote in this field or
subject, began their study in 1968 with the realization
that the use of half-order derivatives and integrals leads
to a more economical and useful formulation of certain
electrochemical problems than the classical approaches.
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This discovery stimulated our interest not only in
the applications of derivative and integral notions to
arbitrary order, but also in the fundamental mathematical
properties of these fascinating operators.

Ordinary  differential equations or partial
differential equations with derivatives of any real or
complex order are fractional differential equations [5].
Several authors have previously stated such equations
and studied their theoretical or numerical solutions.

The He's approximation methods, which include the
Homotopy Analysis Method (HAM), [1,3,8,13],
Homotopy Perturbation Method (HPM), [9], Variational
Iteration Method (VIM), [6,10], are among the
approximate analytical methods used for solving
differential equations in operator form with fractional
derivatives or integrals.

Fractional random ordinary differential equations
are a combination of fractional ordinary differential
equations and random ordinary differential equations
[14,20]. In addition to the preceding, extensive research
has been devoted in recent decades to studying
differential equations with random perturbations, which
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are sometimes referred to in stochastic calculus as a
random process with specific properties [2,6,7,17].
Furthermore, random differential equations are
differential equations that involve random or stochastic
processes. As a result, methods dealing with such
equations struggle with difficulty [12]. As consequence,
random differential equations, as a subset of stochastic
differential equations, are considered in this article to
appear in the stochastic process without derivation.

The HAM will be used in this paper to find the
approximate solution of certain types of multi-term
fractional random ODEs with Caputo fractional
derivatives that satisfy the existence and uniqueness
theorem conditions.

2. Basic Concepts

Some preliminary information and basic concepts
related to this study are provided in this section for
completeness. We begin with the fundamental
definitions of fractional calculus, which will be used
later in the formulation of the problem in this study and
its solution using the proposed approach.

Definition 1, [16]. Let y: [a, b] — R be a function, « a
positive real number, n a positive integer satisfying
n—1<a<nand I is the gamma function. The left
and right Riemann-Liouville fractional integrals of order
a are given respectively by:
a
" Y© = 7 [1 (= 9y (s) ds

RL @ 1 b _

bl ¥(O) = mft (t —s)*ty(s) ds,
where y € C*[a,b], a=>—-1, =0, a+f <n and
t € [a,b].

In fractional differential equations and because of
the occurrence of the initial conditions, the left
Riemann-Liouville fractional integral will be used,

a
which is therefore will abbreviated as RLIt in this study.

Definition 2, [4,22]. The Caputo fractional order
derivative of a suitable function y € C"[a, b] is:

1
“Dfy(t) =

r(n—-a)

Lt = 9me1y™ () ds,
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fort € [a,b],a e RTandn—1<a <n,n€eN.

Some of the most important properties of fractional
order derivative and integrals may be summarized in the
next [2,6,10,16]:

1. fn—1<a<n,neN andy is any function then
_ tk
RLUE CDEy(6) = y(©) = TRz y ™ (01 .
2. “DERIEY(E) = y(b).

3. CpEev = LU pv-a fory > 1, ¢ € RY
Fr(V-a+1)

4. Riygw = L0 yatv for, 5 0 ¢ € R,
F(V+a+1)

5. Ffy(®) = “DYy(®) = y(D).
6. If y®0)=0, i=01,,n—1, neN and if
a+ B <n,ap € Rthen:

i. D CpPy(t) = D cpy(t) = DF*Py(t).
ii. “DEMIfy(e) = "1p “Dgy(®) = D Py() =
RLIf—ay(t).

7. °Df(ayys + azy,) = a1 “DE() + az “DE(,),
a € R*, a,,a, € R.

8. *(aryr + azys) = a; M IE (1) + @ "M IE (),
a € R*, a;,a, €R.

Stochastic calculus, which is related to this study, is
a branch of mathematics that deals with random (or
chance) occurrences in which an experiment occurs with
finite or infinite possible outcomes. As a result, it is
necessary to first explain the meaning of the following
notations: sample space is the collection of all possible
results of a random experiment, and it is represented by
0.

In set language, the sample space is known as the
universal set; thus, the sample space 2 is a set consisting
of a mutually exclusive, collectively exhaustive
collection of all potential results of a random
experiment. That is, 2 = { w, w,, -, w,} denotes the
set of all finite outcomes, whereas 2 = { w1, w,,}
denotes the set of all countably infinite outcomes, and
denotes the set of unaccountably outcomes. A random
variable is also a real-valued function x(w), w € 2 that
can be measured with the probability measure P
[2,6,19].
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When stochastic processes occur, stochastic and
random differential equations appear, which have many
types, one of which is called the Wiener process or the
Brownian motion, which is used in this paper and can be
defined as follows:

Definition 3, [12]. Let ({2, F, P) be a probability space.

A stochastic process we,t € [0,00), is said to be a

Brownian motion or Wiener process, if:

1. PwpEN|wy=0})=1.

2. For 0<ty<t; <--<ty, the increments w; —
Wi,y Op, — Wpys - are independent,
forany N € N.

» Wy = Wiy
3. For an arbitrary t and h >0, w;y, —ws has a
Gaussian distribution with mean 0 and variance h.
where F stands for the g-algebra of subsets of a sample

space 2 and P for a probability measure.

Among the main objectives of this article is to find
the solution of the following multi-fractional order
random ODE:

“DEY(we) = f (6w ye(@), “DEye(@), -..(1)
forall t € [0,T], T € R* and with initial conditions:

Y (o) =¥k, i=01,-,n—1,

where €DZ, €D are the Caputo fractional order
derivatives of order «, such that n—1<a <n,
0<B<a neN, yéi) are given initial conditions and
f is any given continuously differentiable function with
respect to y;.

3. Existence and Uniqueness of Solution of Fractional

Order Random Ordinary Differential Equations
In this section, we will state and prove the existence and
uniqueness theorem of eq. (1) using Schauder fixed
point theorem. For the purpose of simplicity, the proof
will be carried out for a € (0,1].

Theorem 1. Let f:[0,T] x 22 — R be a function
which satisfies:

. f(t, o, ye(wy), Cnyt(wt)) is Lebesgue measurable
with respectto t € [0, T].
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ii. f(t, wpye (@), “DPy.(w,)) is continuous with
respecttot € [0,T].

iii. There exists a constant ¢ € (0,«) and a real valued
function m(t) which belongs to the Banach space

1
Le([0,T)), % > 1 of all continuous functions on [0, T']
. . T 1 ¢
with the norm defined by [[mll, e = (f Im(s)leds)

such that || £(t, e, ye(@), “DEye(w )| < m(),
forallt € [0,T].
Then for any a € (0,1], there exist at least one solution

of the fractional order random ODE (1) on [—h,h],

where:
1

h = min {a, cr(e) (a—c)l—C}E

M 1-c

1 c
M= (foa(m(s))Eds) :
Proof. From i, whenever f is Lebesgue measurable, then
the integral equation equivalently related to the
fractional order random ODE (1) is:
1 t
Ye(@0) = Yo(wo) + s Jy F (5,5, y5(@s),
“DEyo(wy)) ds.
Since a € (0,1], i.e., the function is at most has first
order derivative, then for y, € C1([0,T],R) and define
the norm over the Banach space C([0,T],R) to be the
supremum norm over the region D ={y, €

CY([0,T],R): llys — yoll < b}, which is closed and
bunded. Define the following operator:

Te(@0) = Yo(@o) + g Jo (¢ = )7
f (s, w5, y5(@s), “DEys(wy)) ds.
By using Holder inequality it is obtained that (t —

T (5, w5 ys(s), “DEys(ws))  is Lebsegue
integrable with respect to s € [0, t], for all t € [0, h] and

Iy ||t = )9G5, g ys(@s), CDEys(w)) | ds <
( f;((t—s)a—l)ids)l_c ( fot(m(s))%ds> )

Now, to show that T (y;) € D, forany y, € D
By Holder inequality and condition iii, we obtain that
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ITGe) = oll =
||$ NG
)7 (s, 05, 75(@s), “DEys(wp))ds |
<o [l -9t
|£ (s, @5, y5 (@), “DEys(ws)|| ds

I‘(a)f (t—5)*Im(s) ds

< (= sryweas)  (fomes)ias)
from inequality (2)

r(a) r(a) i) (£ -5 Cds) (fot(m(s))%ds)c

a—1 t 1-c
1 —(t-s)1-c*
r(a) 1

: ) (Fam(s)yeds)
et 01—c

—ﬂ((—)— ) (Jyemyyras)
(

0

1
1 1=\ ac ot 1N
= % E) t fO (m(S)CdS)
1 (1-c\C, 4ec
< %(E) Te=cM < 1, forall ¢ € [0,T],
so ||IT(y¢) — yoll < b and therefore T'(y,) € D.
Now, we have to show T is continuous for any y,, ,y: €
D, m =1,2,- and since limy,||¥m, — ye|| = 0. then
limy, 0 Ym, (@¢) = ye(w;), for t € [0, T].
Thus, by condition ii, we have:
1My sco £ (& @1, Yim, (00, “DE Y, (@0)) =
f(t 0pye(@), “DEye(wp)),
and hence as m — oo
supeefo) || (& e Y, (@0), “DEym, (00)) —
f(t 06 ye(@e), “DEye(w) || — 0. ..3)
So:
ITGm) =T =
1 t
a1 -
) (£ (5, 05, Yimy (@5), DE Y, (@5)) —

£ (s, 35(@s), “Dlys(ws)) )|| ds
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C
= '(a+1) te[ ||f(t wt’ymt(wt) Dt ymt(wt)) -

f(t’wtrYt(wt)' Dt yt(wt))”-

Hence, from (3), getting ||T(ym,) —T(ve)|| — 0 as
m — oo, i.e., T is a continuous operator.

Now, to show that T is compact, i.e., to show that
the family of functions {T(y;):y: € D} is uniformly
bounded and equicontinuous on D, i.e., to show that T is
compact for all y, € D. We get [IT(y)Il < lly:ll + b,
i.e., {T(y;):y: € D} is uniformly bounded and for any
t;,t, €[0,T], t; < t,, by using the Holder inequality,
we have:

”T(}’tz) - T(}’tl)” =
% ”fotz(t2 B
$)¥Hf (s, ws, ys(ws),
INCE
$)*Hf (s, ws, s (ws),

DF yy(ws))ds —

‘Dl ys(ws))ds|

el INCES

$) 71 f (s, ws, Ys(ws),
fttlz(tz -

$)*71f (s, ws, Ys(ws),
INCE

$) 71 f (s, ws, Ys(ws),

Dy (ws))ds +

CnB _
DFyy(ws))ds

‘Dl ys(ws))ds|

ﬁ ”fotl[(tz ) R

(t, — )T f (s, ws, Vs (@s), “DEys(ws))ds +

fttlz(tz -
$)*Lf (5, 05 Ys(@5), DL ys(wg))ds||

<
— [ |1t — ) =
T'(a) 0 2
(t, —
s)“'l]f(s W, Y5(w5), “DEys(w)) || ds +
F(a') tl ( 2

)T (s, w5, ys(@s), “DEys(wy)|| ds
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< ﬁ Otl[(tl —$)4 1 — (t, — )* m(s)ds +
%f:ﬁ(tz —5)* Im(s)ds

<
e USICED

-1 ﬁ t1 1 ¢
(62 = )" ds) = (J (m(s))eds) +
1
1 (¢t _ e ( rt 1\¢
o (2t = 977 1ds) ™ (J2m(s))e)
2M (1-c\17¢ a—c
< m (E) (t, — t1) .
As t; — t,, then {T(y;): y: € D} is egicontinuous on
[0,T] and hence T is compact.
By Schauder fixed point theorem, there exists y; € D,
such that Ty; = y{, which means that y; is a fixed point

of the operator T and hence y; is a solution of fractional
random ODE (1) over [0,T]. m

It is worth noting that when f satisfies the Lipschtiz
condition, the solution is unique, and the proof of
Theorem 1 can be proved for and @ € (n — 1,n], but
the proof is more advanced.

4. Application of the HAM for Multi-Fractional
Order Random ODEs

Several authors have successfully used the HAM as
an operator equation to solve a wide range of nonlinear
problems in science and engineering [6,11,13,15,21]. To
begin using this method to solve multi-fractional order
random ODEs, consider the general form of this
equation in operators form:

Nly:(wp)] =0, (4
where N is a nonlinear operator and y, is the unknown
function to be determined as the solution of problem (4).

Suppose that y,,(w;) is the initial guess
approximate solution of the exact solution of eq. (4),
h # 0 be an auxiliary parameter, H(t) # 0 an auxiliary
function and L an auxiliary linear operator with
property:

L[y:(we)] = 0, when y;(w,) = 0. (5
Construct using p € [0,1] as an embedding parameter,
the so called zero-order deformation:
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L[Q¢(we, p) — Yo, (we)] = phH(ON[Q:(we, D) ],
...(6)
where Q, is the solution of the operator equation which
depends on h, H(t), L, ¥,(w,) and p, where p = 0, the
zero-order deformation given by eq. (6) becomes
L[Q¢(w¢, p) — Yo, (w)] =0, and so L[Q:(w:p)] =
L[yo,(w¢)]. Then taking L=*, will implies to:

Q¢(we,p) = yot(ﬂ)t)v (7
and when p =1, since h # 0 and H(t) # 0 the zero-
order deformation (6) becomes:

N[Q:(w¢, 1)] = 0. ...(8)
As a result, Q;(w¢, p) is the solution of the nonlinear
equation (4) that defines the mt"-order deformation
derivatives:

1 0™Qr(we,p)

mi op™ m=1z-"

Y, (@) = -9

p=0
If ym, (w¢) in eq. (9) exist at p = 1 for all values of m,
then we get the following series solution when
expanding eq. (10) using Taylor series expansion:

Ve(we) = Qp(we, 1)

= ¥0,(@¢) + Lm=1 Ym, (@¢). ...(10)

The previously mentioned equation grants us with
correlation between the exact solution y,(w;) and the
initial guess approximation y, (w;) with aid of the
expression yy, (w;), m = 1,2,---, which are unknown
till the present stage.

The higher-order deformation equation of the next

iterated solutions may be derived by first defining the
vector:

J_/)it(wt) = [yOt((‘)t)' yl[(wt)’ Y ylt(wt)] b (1 1)
Differentiating eq. (6) m-times with respect to the
embedding parameter p and dividing by m! after setting

p =0, we have the so-called mtt-order deformation
equation:

L[ymt(wtr p) — mem—lt(a)t' p) =

hH )Ry (Ym—1,(@¢)), .-(12)
where:
0, <1
Xm={1 Z>1 ...(13)
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N 1 9™ IN[Qi(wsDp)
Ron G-, (09)) = sy g aaee)

(14
p=0

Thus, we can get yo, (w), y1,(w), ... to be the high order
deformation equation (12) one after one in ascending
order. Finally, the m*"-order approximate solution of eq.
(14) is given by:

Ve(we) = Z;'X;o}’it(wt)- ...(15)
The proposed study of this section is to apply the HAM

to solve random multi fractional order ODE, which is
presented in egs. (1) which is proceeded by considering:

N[y:(w:,p)] =
“DEy (@i, D) — f(t, we, ye(wp), “DEyi(wp)),
...(16)

and hence the approximated unknown function y, can be
evaluated as in the above approach.

5. Convergence Analysis

To prove the convergence of the approximate
solution of the multi-term random fractional order ODE
(1) presented in Section 4 to the exact solution. It is
interesting that, as long as the series (15) converges, it
can be concluded that:

Yim=1 Rm(j}m—lt(wt)) =0.

If the series X.5—o ym, (@, p) is convergent, then it can
be described as:

St(we) = Z;(n:o ymt(wt' p),
and it holds that:

limy, o0 Y, (Wg, 0) = 0, ...(17)
using eq. (13) and the left-hand side of eq. (12), then:

Y=1[Ym (@6 P) = XmYm-1,(@0)] = y1,(@;, P) +
V2, (0, 0) — Y1, (e, p) + ¥3, (Wi, p) —
Y2, (@, p) + -+ Y (0, P) = V-1, (@01, p) =
Vi, (e, D),
so according to eq. (17), we have:
Yim=1[Ym (@6 P) = XmYm-1, ()] =
limy, 0 Y, (w¢, ) = 0.
Hence, using the linear operator L = “D¥ n—1<a <

n, n €N and the related properties of fractional
calculus, one may get:
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Yim=1 LYm (@6 0) = XmYm-1,(00)] =
L Ym=1[Ym, (@6 D) = XmYm-1,(@)] = 0,
and eq. (12) satisfies:

Yim=1L[Ym, (06 D) = Xm¥m-1,(@0)] =
Hi(we)h Ym=1 Rm(ym—lt((‘)t)) =0,

and since h # 0, H;(w¢) # 0, then:
Z?rol:lRm(j}m—lt(w)) = 0.

Substituting egs. (16) and (14) into the previous equation

and by reducing it, since the series (15) is convergent,
then we have:

Ym=1 Rm(j;m—lt(wt)) = Ym=1 [ CD?)’m—lt(ﬂ)t) +

“DE ym-1,(@0) + Ym-1,(06) = (1 = ) ge(wp)]

Yim=1 CD?)’m—h(wt) +
Ym=1 CDme—lt(wt) + Xm=1Ym-1, (@) —
Ym=1(1 = xm)g: (@)
= “Df Yim=0Ym, (@) + CDf Yim=0Ym,(@¢) +
St(we) — ge(we) =0
where is the nonhomogeneous term and form initial
conditions and eq. (10), getting:
St(we) = Xm=o ymt(wt)-
Thus S;(w;) satisfy eq. (1) and it must be the exact
solution for the initial value problem (1).

6. Numerical Simulation

In this section, three examples will be considered
and solved by simulating 1000 and 10000 generations of
Brownian motions.

Example 1. Consider the linear multi-fractional order
random ODE:

“DE7yi(we) + “DP*y,(wy) = sin(w,),t[0,1],...(18)
subject to the initial condition y,(wy) = 1.

To start the solution, consider a fixed Brownian motion
and let:

gt (wy) = sin(wy), ...(19)
and consider the initial guess solution y,, (w;) =
Vo(wp) = 1. Hence:
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t yt(wt) + CDt Yi(we) — sin(wy).
...(20)

Let L = CDt yt(wt), h = _1 and Ht(wt) = 1 ThUS,
according to eqg. (18),

CDt2'7 [Ymt (wt) - mem—lt(wt)]

N[yt (w)] =

= _Rm(}-’)m—lt(wt))

...(21)
m(}_}m 1t(wt)) =
)(m)sm(a)t). ...(22)
The zero-order deformation is:
Rlz:2'7 CDtZ'7 [YIt(wt) - leot(wt)] =
- R1t2'7R1 (}’Ot(wt))’
where:

R1(yo,(wp)) = ‘DE7 Yo, (we) + ‘p+ Yo, (we) + (1 —
x1)sin(wy)

= CDt2'7}’0t(wt) + “pp* Yo, (w¢) + sin(wy).

Now, applying Riemann-Liouville fractional integral of
order 2.7 to the both sides of eqg. (21) and using the
initial approximate solution (19), then the functions
y1,(w¢) may be evaluated as:

Y1t(wt) == R1t2'7R1(J’ot(wt))

RIZ 7| ‘D37 Yo,(we) +
t .VOt(wt) + sm(wt)]

[RIZ 7 CpE7 Yo,(w¢) +
RIZ 7 CDt yOt(wt) + R1t2'7(51n(wt))]
= —[1+ RI23) + *I127 (sin(w))]

sin(wt) 2.7
r'(3.7)

—_1__1 .23_
r@3)

The higher order deformation is started by letting m =
2, then:
R1t2.7 Cth'

7[Y2t(a)t) - Xz)’1t(wt)] =
- R1t2'7R2 (}’1t(a’t))’
where:
Ry(y1,(wy)) = D27 V1, () + CDt0'4J/1t(‘Ut) -
(1 X2)sin(we)
= “D¢7y,(wp) + “pp+ Y1, (@e).
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Hence:

YZt(wt) = Y1t(wt) - R1t2'7(R2(J’1t(wt)))

)’1t(wt) -
Rz 7( ‘D7 1, (w) + CDtO'4Y1t(wt))

= 3’1t(wt) - }’1t(wt) - R1t2'3 (ylt((‘)t))

_ _Rp23(q4__1 .23 _siny, 27
==k (1 r'(3.3) I'(3.7) t )
__1 .23 1 46 , sin(we) .5
- r(3.3)t +F(5.6)t + r'(6) t=

Also, if m = 3, then applying similarly as in the above,
getting:
y3,(w;) = —0.000107742t"3sin(w,) —
0.000242559t%° — 0.0162459t*°.

So on, one may proceed to find y, (w¢), ys, (@), ...
and thus the solution is given by:

Ve(we) = Yo, (W) + y1,(we) + ¥o, (W) + -+

1.55851 x 10~ 8¢*6 —

0.000242559t%9 + (—0.2397712.7 +

0.00833333¢t° —

0.000107742t7-3)sin(w;). ...(23)

Figures 1 presents the approximate solution (23) of

ed. (18) in terms of y, (w.), ¥1,(we), y2,(wy) and
y3,(w¢) with 1000 and 10000 generations of Brownian
motion.

N=1000

Solution




P- ISSN 1991-8941 E-ISSN 2706-6703
2023,(17), ( 2 ):343— 354

N=10000

0.18
0.16
014
0.12

Solution

ooooo o
MR oE oo om

0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1

Figure 1. The approximate solution of Example 1 using the
HAM for different number of Brownian motions 1000 and
10000, respectively.

Example 2. Consider the linear multi-term fractional
order random ODE:
Dty (wp) + w? “DR3yp(we) = ge(wp), -..(24)

for all t € [0,1] subject to the initial condition y,(wg) =

/ re) Ire)
Y0(@o) = 0, and ge (@) = 7 t™ + 1o

tl 7
First, choosing the first guest approximation y, (w;) =
0, and hence
N [ye(wp)] =
then:

L[ym, (@¢) = Xm¥m-1,(@r)] =
hHy ()R (Fm—1,(@0)),
where:

CDtlAyt(wt) + w? CDt Ye(we) — ge(wy),

...(25)

R (Y- lt(wt)) = D}y, 1, (@) +
w? D23y, (@) — (1 = xm)ge(wp),  ...(26)

So, letting L = “D!* h=-1 and H,(w;) =1, and
hence eq. (25) will take the form:

CDtlA[ymt(wt) _Xm:)’m—lt(wt)] =

_Rm()_;m—lt(wt))- ---(27)
Applying the Riemann-Liouville factional order integral
RL114 to the both sides of eq. (27) and using the initial
approximate solution y,, (w;) =0, then the functions
Y1,(@¢), ¥2,(w;), -+ may be evaluated one after one in
order by solving the linear higher-order deformation
equations:

RL[tl'4 CDtl'4 [Ymt(wt) - Xm)"m—1t(wt)] =

_RLItlARm()_;m—lt((‘)t))- ~--(28)
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If m =1, then:

RL1151'4 CDtM[yh(wt) - )(13’0t(wt)] =

_RL1t1'4R1(}’0t(wt))a
and since y,,(w;) =0, x; =0, the last equation will
take the form:

ylt((‘)t) = _RLIgARl()’ot(wt))

RLI?“[ “Di*yo, (we) +
t yOt(wt) -(1- X1)gt(wt)]
[}’ot(wt) + wf R Yo, (w¢) —

RLIt gt(wt)]

— RL11.4-

g (w) =t* + RN

2:3.1
r.1) t
If m = 2, then:
RLItM CDtM[)’zt(wt) - Xz}’1t(wt)] =
—RLItMRz(}ﬁt(wt)),
since y,, = 1,forallm = 2,3, -
YZt(wt) - ylt((‘)t) = —RthlARz(}’u(wt)),
where:
Rz(}’lt(wt)) = D y1,(we) + wf ‘pp3 y1,(@e).
Thus:

V2, (0) = y1, (@) = —y1, (W) — wZRh [tz +

and hence:

TG 2431
r(s.1) et ]’
and so, carrying the required calculations, getting:
__TI® 2.31_ LB 4,42
yzt(wt) = r(4_1)wt 62 t

Similarly, we can calculate y;, (w;), which is found to
be:

4 42 4 LB rQ)

w653
. 3) t

V3, (W) = m
and so on.

Using eg. (23), the approximate solution of eq. (24)
using the HAM up to the third terms is given by Figure 2
with 1000 and 10000 generations of Brownian motion.
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N=1000

12

Solution

Solution

0.1 02 0.5 04 0.5 0.6 0.7 08 09 1
t

Figure 2. The approximate solution of Example 2 using
the HAM for different number of Brownian motions
1000 and 10000, respectively.

Example 3. Consider the nonlinear fractional order
random ODE:

DA%y, (we) + D3y (wy) = %to.s
Zwt 1.7
re.7 t~’, t €[0,1], @

with initial condition y,(wg) = 0.

To solve eq. (29) by means of HAM, we choose the
initial approximation y,, (w;) = 0 and letting:

Nelye(wp)] = D,?'SYt(wt) + “DP3y¢(we) —
®e 05 _ 20F £17
r(15) r(.7)

According to eqgs. (12)-(14) and with L = ¢DY5,
h = —1and H;(w) = 1, we have:
CD?'S [ymt(wt) - mem—lt(wt)] =
_Rm()_;m—lt(wt))a
and upon integrating both sides of the last equation with
fractional order 0.5, implies to:
RLIE'S CDE'S [ymt(wt) - mem—lt(wt)] =
_RLIt(')'SRm(j;m—lt(wt))a
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where:

m(Ym lt(wt)) = “DYSyp,_ 1, (wp) +
Zﬁol CD?3(3’it(wt)3’m—1—it(wt)) -(1-

we 05, 20¢ 17
X1) (r(1.5) t re.7) t )
Thus, if m = 1;
RLItO'S CD?'S[}’lt(wt) - X13’0t(wt)] = _RLItO'SRl(J’ot(wt))

R1(}’ot(wt)) =
t yOt(wt) + Z CDtOB(yit(wt)y—it(wt)) -(1-

405 207 1.7)
X1) (r(1 5) + re.7) t

wp)) =

= CDf. yot(wt) + CD?.S(yOt(wt)yOt

2
20t 117
re.7)

r(1 5)

2
20fF 17
re.7)

_ Wt .05 _

r(1.5)
Hence:

20?2

— _RLj0S (_ @05 _
re

r(Ls)

t1.7)

}’1t(w)

_ wtr(1.5)
T @)

if m = 2, then:
RLI?'S CD?'S[th(wt) - XZYIt((‘)t)] =
—RLI?'SRZ()’ot((Ut) }’1t(wt))
Rz(Vot(wt) 3’1t(0)t)) = ‘D" yi,(we) +
Tico D& (yi, (@)y1-i, (@)
= DP%y1,(wp) + 2 “DP3(yo, (0 )y1, (@)
= CD?'Syh(wt),
and thus from eq. (30):
= ylt(wt) - RLIO'SRZ (yot(wt)'ylt(wt))
= .V1t(wt) - RLIES( CDt Y1t(wt)) = 0.
Similarly, if m = 3, then:
RLI?'S CD?'S[)’3t(wt) - X33’2t(wt)] =
—RL10'5R3()’0t(wt) Y1t(wt) yzt(wt))
Ra(}’ot(wt) V1, (@), .VZt(a)t)) = pPs V2, (we) +
2 CDtO B(YLt(ﬂ)t)J’Z l[(a)t))
Dy, (we) + CD?'3(3’0t(ﬂ)t)3’2t(ﬂ)t) +
y12t (we) + yzt((‘)t)ylt((‘)t))
‘D3 (¥i,(w0),

Zwt £22,
r(.z2)

...(30)

yzt(wt)
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and so after carrying out some calculations:
= YZt(wt) - RL[?'S CDLPB (th(wt))
= =122 (yf,(wp)

Y3t(wt)

—0.299812t*w} —

0.572481t%>5w? — 0.80902t37 w3,
Similarly, if m = 4, we will get y; (w;) = 0, while if
m =5, implies:
s, (W) = —1.26142t* wf — 0.959935t>°w; —

0.558361t3%w? — 0.247373t7 1 w?,
and so on.
Finally, the approximate solution is given by:

ye(wr) = Yo, (@) + 1, (@) + ¥z, (@) + -
= 0.825094t22w? + 1.50699t*°w} — 0.572481t*5w? +

1.3201t5'w? + 0.328871t73w¢ +
0.0327315t%7 w3 + 0.975335tw,. ..(31)

The approximate solution (31) of eq. (29) in terms of

Yo,(@w¢), ¥1,(We), ¥2,(we) and ys (w,) with 1000 and
10000 generations of Brownian motion are drown
respectively in Figure 3.

N=1000

Solution

N=10000

Solution

Figure 3. The approximate solution of Example 3 using
the HAM for 1000 and 10000 number of Brownian
motions, respectively.
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7. Conclusions

The HAM was used in this study to derive
approximate solutions to linear and nonlinear multi-
fractional random ODEs. In conclusion, HAM produces
accurate numerical results for such problems, and the
convergence of the series solution can be controlled by
selecting the appropriate auxiliary and homptopy
parameters.
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