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Introduction:

_ pifferential eq_uations_ are one of the most Bty 4 Bty 4 Bty 4 Boy
interesting problems in applied mathematics. Because = u(t),

they have various applications in both engineering and
science [3,5,10]. Several transformations have been
presented to solve this problem, including the Fourier
transform [8] and the Laplace transform. Recently, new
transforms that depend mainly on the development of
the Laplace transform have been discovered, including
the Aboodh transform [2], Elzaki transform [6], complex

where By, S1,:*, P, are constants, and u(t) is known
function.

Definitions, properties, and theorems of AEM
Transform :

Definition 1. [7] The General Polynomial Transform of
f(t) denoted by the operator F is given by

SEE transform [4], Emad-Sara integral transform [9], ©
Polynomial integral transform [1], General Polynomial LIF(O] = j @@+ £ (1) dt = Fp(a
transform [7], Al-Temimi transformation [5], N- sLF @] f@® (P( ))-

t=1
Now, we will introduce the definition of Ahmad-
Emad-Murat transform and its properties :
Definition 2. The Ahmad-Emad-Murat Transform of
f(t) denoted by the operator E (H (), p()) is given by

transform [11], and other transforms. In this study, we
developed General Polynomial transform by writing the
kernel function in its general form. And with this, we get
a more generalized transformation. In this paper, we will
employ AEM Transform to solve differential equations

with variable coefficients, as the following: AEMIf(D)] = H(a) f = @@+ £(p) gt

*Corresponding author at: Department of Mathematics, t=1
Faculty of Science, Karabuk University, Karabuk, Turkey; = E(H(a), p(a)).
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Tel:+905512770293 Where H(a), p(a) are functions of parameter a.
E-mail address: ahmad93.issal8@gmail.com Definition 3. The inverse of Ahmad-Emad-Murat

Transform of E(p(a),p(a)) denoted by (AEM)~! and
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defined as
(AEM)~AEM[f(D)]] = f(©)
1 S+it tp(a)+1
= ﬁg_ir ) E(H(a),p(a)) da.

In general w = § + it with § and 7 being real numbers,
i € C. The integral converges when R[a] =& > 0 and
§ <0,E(H(a),p(a)) = 0.
Some properties of AEM Transform are as follows:
e (Linearity of AEM Transform) If f(t) =
Cg(t) + Dh(t), then
AEM[Cg(t) £ Dh(t)]

—H(@ [ @D
t=1

t Dh(t)) dt,

= CH(a) f t~®P@O+D g (1) dt
t=1

+ DH(a) f t~ @@+ 1) dt,
t=1

= C AEM[g(t)] + D AEM[h(t)].

e |If f(t) = C,C is constant, then

o)

AEM|[C] = H(a) f
t=1

t—(P(a)"'l) (C) dt

= CH(a) jt‘(l’(“)“) dt,

t=1
_on tP@1”  CH(a) .
- e[S T PO

o Iff(t) =t™, then

AEM[t™] = H(a) f ¢~ PO+ gmy gt
t=1

= H(a) J t~@@+1-m) g¢
t=1

t—p(a)+m *®
] ,pa) >m.
1

=Hm4— “p@-m
o If f(t) =Int,t > 1then

p(a) +m
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= H(a)(Int

AEM[t™Int] = H(a) f
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AEM[Int] = H(a) f t~ @@+t dt,

t=1
00

t~p@) 1 t~p@)
" | i 5@

dt)

_H@ [ “@+1) gy - L
=>@ tzflt dt_p(a).AEM[l]
H(a)
= ,p(a) > 0.
(p(@)’
o If f(t) =t™Int,t>1,m € Rthen

¢~ @@+ gmyp ¢ g

t=1
t—pla@)+m v 1 tpl@+m
=H@)(Int —————|7 — f—— dt
(@)( —1o(cr)+m|1 t=1t —p(a) +m )
H(a) = P@+D+m gy
pla) —m J
=—— AEM[t™
b —m M
H(a)
= —(p(a) — m)z ,p(a) >m.

o |If f(t) =sin(aln(t)),t > 1,a € R, then
AEM [sin(aln(t))]

- 1@ |
t=1
by integrating by parts twice, we get
a H(a)
(p(@)” +a?
o If f(t) = cos(aln(t)),t > 1,a € R, then
AEM cos(aln(t))]

t~ @@+ sin(aln(t)) dt,

AEM [sin(aln(t))] =

= H(a) j t~ @@+ cos(aln(t)) dt,
t=1
by integrating by parts twice, we get
H(a) p(a)
—
(p(oc)) + a?
e If f(t) = sinh(aln(t)),t > 1,a € R, then
a H(a)

———— Ip(@| >a
(p(@))" —a?
e If f(t) = cosh(aln(t)),t > 1,a € R, then

AEM cos(aln(t))] =

AEM [sinh(aln(t))] =
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H@)pl@)
(p(@)* — a?
Theoreml. If m € R and
AEM[f(©)] = E(H(a),p(a)), then

AEM[t™f(t)] = E(H(a),p(a) —m).

AEM |[cosh(aln(t))] = ,p(@)| > a.

AEM[t™f ()] = H(a) ft_(p(“)“)tmf(t) dt,
t=1

= H(a) ft‘@(“)“‘m) f(t)dt
t=1

= E(H(a),p(a) —m).
AEM Transform of derivatives of f(t) :
1.

AEM[tf'(t)] = H(a) ft‘(p(“)“)tf’(t) dt
t=1
—H@ [ PO de
t=1

= H@) (@ FO)I2 + p(a) f @@ £(5) de)
t=1

= —f(1) H(a) + p(@E(H(@),p(a)).
2.

AEM[t3f" (V)] = H(a) jt‘(p(“)“)tzf”(t) dt

t=1
= H(a) Jt‘(p(“)‘l)f”(t) dt,
t=1

= H@ (" ®@™ /@7
+(@@-1)
]

= H(@)(—f'(1) + (p(a) — D[tP@ FO)|
+ p(a) j @@ £(1) dr)

t=1
=—-H(a)f'(1) —H(@)f (1) (p(a) — 1)
+p(@)(p(a) = DE(H(a), p(a)).
Theorem 2. Let f(t) be continuous on (1,) and if
1), (), -, f™(t) are exists, then
AEM[t™ ™ (©)] = —H () f ™D (1) — H(a)(p(a) —

t7P@ £ (1) dt)
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(m = 1)f™2(1) — H(@)(p(@) — (m - 1)(p(a) -
(m=2))f ™ (1) -~ H(@)(p(a) — (m -
D)(p(@) = (m = 2))(p(a) = (m = 3)) - (p(a) -

DF () + 2= E(H(@),p(@)

Proof. Let we do with mathematical induction
i. Istrue form =1

AEM[tf'(t)] = H(a) ft_(p(“)+1)tf'(t) dt

t=

1
= H(a) f tP@F(t) dt,
t=1
= H@)(t @ FOI2 + p@) f @@ £(r) de)
t=1

= H(@)(~f(1) + p(a) f @@+ £(5) dr)
t=1

=—f(1) H(a) + p() AEM[f (t)]
= —f(1) H(a) + p(@)E(H(a),p()).

form = 1 is true.
ii.  Lettrue for mthatis

AEM[t™fF ™ (1)]
= —H(a)f ™ (1)
— H(@)(p(@) — (m — D)) ™=2(1)
— H(@)(p(a) = (m — 1)) (p(a)
—(m-— 2))f(m—3)(1) _ ...
— H(a)(p(a) — (m = 1))(p(a)
— (m—2))(p(a) = (m = 3)) - (p(a)
-Df@)

p(@)!
+ WE(H((Z),I)((I))

iii.  We must show true form + 1
AEM[tm+1f(m+1)(t)]
= H(a) ft—(p(a)+1)tm+1f(m+1)(t) dt

t=1

—H(@)f ™ (1)
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— H(a) f £=((@-m) £(m+1) (¢) g =
t=1

= H(@(E @O fm o)z
+ (@

—m) ft—(p(a)—mﬂ) f(m)(t) dt)

t=1
= —H(a)f™(1)
+ (p(a) —m)AEM [tm f (m) (t)]
= —H(a)f™ (1)

+ (p(a) —m) [—H (@f ™D (1)

— H(@)(p(a) — (m — 1)) f™2(1)

— H(@)(p(@) — (m = 1))(p(a)
—(m-— 2))f(m—3)(1) — ..
—H(@)(p(@) — (m — 1))(p()

— (m—2))(p(a) = (m = 3)) - (p(a)
-Df ()

!
B E(H@p()| -

+[=H(@ (@) —m)f " (1)

— H(@)(p(a) — m)(p(a)

- (m—1))f™2(1)

— H(@)(p(a) — m)(p(a)

— (m—-1)(p(a)

—(m-— 2))f(m—3)(1) -

— H(@)(p(a) —m)(p(a)

- (m—-1)(p(@) — (m—2))(p(a)

—(m—3))- (@) - Df()

p(a)!
@ — Gt oy @ P@)

Thus, for m + 1 is true.

Examples of Applying AEM Transform
Differential Equations with Variable Coefficients:

In this section two examples are given and exact
solution is found using our new transformation.

Example 1. [5] consider the following equation

on

1
t?y" + 6ty + 6y = ok (1)
with ICs y'(1) = 2, y(1) = —4.
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By using the AEM Transform into equation (1), we get:
AEM[t?y"] + 6 AEM[ty'] + 6 AEM[y]
1

= AEM [t—z] (2
Equation (2) can be written in the form
—H(a)y'(1) — H(@)y(D)(p(a) — 1)

+p(a)(p(a) — DE(H(a),p(a))

— 6H(a)y(1)
+6 p(@E(H(@),p(@) + 6 E(H(2),p(@)) = -

and by applying the initial condition and simplify
equation, we obtain :

_ 2(p(@))* +10p(a) + 13
E(H(a),p(a)) = H(a) (p(a) + 2)2(p(a) + 3)

By using the partial fraction of the last equation, we
have

E(H(a),p(a)) =

H(a)
p(@)+2 (p(a)+2)°

H(a)

+ @) +3 3)

By using the inverse AEM transform into equation (3),
we get the solution of equation (1), that is,
y() =t2+4+t2Int +t3.
Example 2. consider the following equation
ty' + 2y = cos(2Int), (4)
with IC y(1) = 1.
By using the AEM Transform into equation (4), we get:
AEM[ty'] + 2 AEM[y] = AEM[cos(21Int)]. (5)
Equation (5) can be written in the form
—H(a)y(1) + p(@)E(H(a),p(a)) + 2 E(H(a), p(a))
H(a) p(a)

T @) +4
and by applying the initial condition and simplify

equation, we obtain:
H(a) H(a) p(a)
E(H(a),p(a)) =
H@P@) = 32t G + D@7+ 4
By using the partial fraction of the last equation, we
have

H(a)

3 H@ 1 H@p@)
E(H(a),p(@) = 4 p@+2 " 4 (p(a)?+4
1 H(a)

—— (6

2 p@y 4
By using the inverse AEM transform into equation (6),
we get the solution of equation (4), that is,
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(t)—3t‘2+1 2Int +1 in(2Int
y =2 4cos( nt) 4sm( nt).

Conclusion

In this study, a new type of transformation (AEM
transform) was constructed and applied to differential
equations with variable coefficients. And then we used it
to solve a class of “Euler equation”. The main advantage
of the proposed transform for solving this equation is to
find solutions without dealing with complex
calculations, and to get a more generalized transform
from a general polynomial transform. Furthermore, from
the definition of the AEM transform, we can construct
many new integral transformations by selecting new
formulas for H(a) and p(a). In future studies the
proposed transformation can be used to solve differential
difference equations.
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