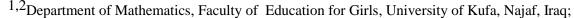
# Bipolar Valued Fuzzy SA-subalgebras and Fuzzy SA-ideals of SA- algebra.

Alaa Salih Abed 1\*, Areej Tawfeeq Hameed 2





## ARTICLE INFO

Received: 08/08/2023 Accepted: 28/08/2023 Available online: 19/12/2023

#### DOI: 10.37652/juaps.2023.181582

#### **Keywords:**

SA-algebras, fuzzy SA-subalgebra, bipolar valued fuzzy SA-subalgebra, fuzzy SA-ideal, bipolar valued fuzzy SA-ideal.

Copyright@Authors,,2022, College of Sciences, University of Anbar. This is an open-access article under the CC BY 4.0 license (<a href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</a>).



# ABSTRACT

In this paper, the notions of bipolar valued fuzzy SA-subalgebras and bipolar valued fuzzy SA-ideals on SA-algebras with their properties are familiarized. Several theorems are stated and proved with their examples. After that we introduced new notion which is negative anti-fuzzy SA-subalgebra(SA-ideal) of SA-algebra . The image and inverse image of bipolar valued fuzzy SA-subalgebras and bipolar valued fuzzy SA-ideals are defined and how the homomorphic images and inverse images of bipolar valued become bipolar valued fuzzy on SA-algebras is studied as well.

#### **Introduction:**

Areej Tawfeeq Hameed and et al ([2]) presented a different algebraic building, named SA-algebra, they have calculated a few belongings of these algebras, the conception of SA-ideals on SA-algebras was conveyed and some of its properties are scrutinized. The conception of a fuzzy set, was familiarized by L.A. Zadeh [10]. In [9], S.M. Mostafa and A.T. Hameed made an extension of the conception of fuzzy set by an interval-valued fuzzy set (i.e., a fuzzy set with an interval-valued membership function).

This interval- valued fuzzy KUS-ideals on KUS-algebras is referred to as an i-v fuzzy KUS-ideals on KUS-algebras. they created a way of estimated inference using his i-v fuzzy KUS-ideals on KUS-algebras. In this paper, using the conception of <a href="bipolar valued fuzzy subset">bipolar valued fuzzy subset</a>, we familiarize the conception of a bipolar valued fuzzy SA-ideals (briefly, BVFSAI) of a SA-algebra, and reading some of their properties.

\*Corresponding author at: Department of Mathematics, College of Education for Girl, University of Kufa , Najaf, Iraq; ORCID:https://orcid.org/0000-0002-0525-

9172;Tel:+9647812639334

E-mail address: alaas.abed@uokufa.edu.iq

Using a bipolar valued <u>level set</u> of a bipolar valued fuzzy set, we public a characterization of a bipolar valued fuzzy SA-ideals. We evidence that every SA-ideals of a SA-algebra E can be appreciated as a bipolar valued level SA-ideals of a bipolar valued fuzzy SA ideals of E. In connection with the idea of homomorphism, we educat.

how the images and inverse images of bipolar valued fuzzy SA-ideals develop bipolar valued fuzzy SA-ideals.

#### 2. PRELIMINARIES

Now, we offer some definitions and preliminary results wanted in the later sections.

**Definition** (2.1)[2]. Let  $(\mathbb{E}; +, -, 0)$  be an algebra with two binary operations (+) and (-) and constant (0).  $\mathbb{E}$  is named an *SA*-algebra if it fulfills the next identities: for any  $\Psi, \xi, \zeta \in \mathbb{E}$ ,

$$\begin{split} (SA_1) & \ \, \forall - \ \, \forall = 0, \\ (SA_2) & \ \, \forall - 0 = \ \, \forall, \\ (SA_3) & \ \, (\ \, \forall - \xi) - \varsigma = \ \, \forall - (\varsigma + \xi), \\ (SA_4) & \ \, (\ \, \forall + \xi) - (\ \, \forall + \varsigma) = \xi - \varsigma. \end{split}$$

In  $\mathbb{H}$  we can describe a binary relation ( $\leq$ ) by :

 $\Psi \leq \xi$ if and only if  $\Psi + \xi = 0$  and  $\Psi - \xi = 0$ ,

ਖ,  $\xi \in \mathbb{H}$ . And we will symbolize it by  $\bar{\mathbb{H}}$ 

**Example (2.2)[2].** Let  $\mathbb{H} = \{0, 1, 2, 3\}$  be a set with the following tables:

| + | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 |
| 1 | 1 | 2 | 3 | 0 |
| 2 | 2 | 3 | 0 | 1 |
| 3 | 3 | 0 | 1 | 2 |

| _ | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 3 | 2 | 1 |
| 1 | 1 | 0 | 3 | 2 |
| 2 | 2 | 1 | 0 | 3 |
| 3 | 3 | 2 | 1 | 0 |

Then( $\mathbb{H}$ ; +, -,0) is  $\overline{\mathbb{A}}$ 

**Lemma** (2.3)[2]. In  $\bar{\mathcal{A}}$  .For any  $\Psi$ ,  $\xi \in \mathcal{H}$ ,

$$(L_1) \Psi + \xi = \Psi - (-\xi).$$

$$(L_2) \Psi - \xi = \Psi + (-\xi),$$

$$(L_3) \Psi - \xi = -\xi + \Psi.$$

**Proposition** (2.4)[2]. In  $\bar{\mathcal{A}}$  .The next holds: for any  $\Psi, \xi, \zeta \in \mathbb{H}$ 

$$(a_1)(\Psi - \xi) - \zeta = (\Psi - \zeta) - \xi,$$

$$(a_2) \ 0 - (\Psi - \xi) = (\xi - \Psi),$$

$$(a_3)$$
 ч  $-\xi \le \varsigma$  imply ч  $-\varsigma \le \xi$ ,

$$(a_4)$$
ч  $\leq \xi$  imply  $\varsigma + \xi \leq \varsigma +$  ч,

$$(a_5)(\Psi - \xi) - (\varsigma - \xi) \le \Psi - \varsigma \text{ and } (\Psi - \xi) - (\Psi - \varsigma) \le \varsigma - \xi.$$

$$(a_6) \ \mathtt{u} \le \xi \ \text{ and } \xi \le \varsigma \text{ imply } \mathtt{u} \le \varsigma.$$

**Definition** (2.5)[2]. In  $\bar{\mathcal{A}}$ , let S be a nonempty set of IC. S is named a SA-subalgebra of IC if  $\Psi + \xi \in S$ ,  $\Psi \xi \in S$ , whenever  $\Psi, \xi \in S$ . And we will symboliz it by SAS-Æ

**Definition** (2.6)[2]. A nonempty subset I of a  $\bar{\mathcal{A}}$  is named a SA-ideal of IE if it fulfills: for  $\Psi$ ,  $\xi$ ,  $\zeta \in \mathbb{H}$ ,

- (1)  $0 \in I$ ,
- (2)  $(\Psi + \varsigma) \in I$  and  $(\xi \varsigma) \in I$  imply  $(\Psi + \varsigma) \in I$
- $\xi \in I$ . And we will symboliz it by SAI-  $\bar{\mathcal{A}}$

**Proposition** (2.7)[2]. Every  $SA - \overline{AE}$  of  $\overline{AE}$  is a  $SAS - \overline{AE}$ of IE and the converse is not true.

Lemma (2.8)[2]. An SAI of Æ has the following property:

- 1- If for any  $\mathbf{u} \in \mathbb{H}$ , for all  $\xi \in \mathbf{I}$ ,  $\mathbf{u} \leq \xi$  implies  $\mathbf{u} \in \mathbf{I}$ .
- 2- If for any  $\Psi \in I$  implies  $-\Psi \in I$ .

**Definition** (2.9)[10]. Suppose  $\mathbb{H}$  be a nonempty set, a fuzzy subset  $\rho$  of  $\mathbb{H}$  is a function  $\rho : \mathbb{H} \to [0,1]$ .

**Definition** (2.10)[2]. Suppose  $\mathbb{H}$  be a nonempty set and  $\rho$  be a fuzzy subset of IC, for  $t \in [0,1]$ , the set

 $\rho_t = \{ \Psi \in \mathbb{H} | \rho(\Psi) \ge t \}$  is named a level subset of  $\rho$ .

**Definition** (2.11)[2]. IN  $\bar{\mathcal{A}}$ , a fuzzy subset  $\rho$  of  $\mathbb{H}$  is called a fuzzy SA-subalgebra of I€ if for all

 $\Psi, \xi \in \mathbb{H}, \ \rho(\Psi + \xi) \ge \min\{\rho(\Psi), \rho(\xi)\}\$ and  $\rho(\Psi - \xi) \ge \min\{\rho(\Psi), \rho(\xi)\}$ . And we will symbliz it by FSAS-Æ

**Theorem** (2.12)[2]. Suppose  $\rho$  be a fuzzy subset of  $\bar{\mathcal{A}}$ , then

1- If  $\rho$  is a FSAS-  $\bar{\mathcal{A}}$  of  $\mathbf{IC}$ , then for any  $t \in [0,1]$ ,  $\rho_t$  is a SAS-Æ of Æ, when  $\rho_t \neq \emptyset$ .

2- If for all  $t \in [0,1]$ ,  $\rho_t$  is a SAS- $\bar{\mathcal{A}}$  of  $\mathbb{R}$ , then  $\rho$  is a FSAS-Æ of Æ.

**Definition** (2.13)[4]. In  $\bar{\mathcal{A}}$ , a fuzzy subset  $\rho$  of  $\mathbb{H}$  is called a **fuzzy SA-ideal of I€** if

for all  $\Psi$ ,  $\xi$ ,  $\zeta \in \mathbb{H}$ ,  $\rho(0) \ge \rho(\Psi)$  and  $\rho(\Psi + \xi) \ge \rho(\Psi)$  $min\{\rho(\Psi+\zeta),\rho(\xi-\zeta)\}.$ 

And we will symbliz it by FSAI- Æ

**Theorem** (2.14)[4]. suppose  $\rho$  be a fuzzy subset of  $\bar{\mathcal{A}}$ , then

1- If  $\rho$  is a FSAS- $\bar{\mathcal{A}}$  of  $\mathbb{R}$ , then for any  $t \in [0,1]$ ,  $\rho_t$  is a SAS- $\bar{\mathcal{A}}$  of  $\mathbb{H}$ , when  $\rho_t \neq \emptyset$ .

2- If for all  $t \in [0,1]$ ,  $\rho_t$  is a SAS- $\bar{\mathcal{AE}}$  of  $\mathbb{H}$ , then  $\rho$  is a FSAS-Æ of Æ.

**Theorem (2.15)[4].** Suppose  $\rho$  be a fuzzy subset of  $\bar{\mathcal{A}}$ .  $\rho$  is a FSAI-  $\bar{\mathcal{A}}$  of IC if and only if,

for every  $t \in [0,1]$ ,  $\rho_t$  is a SAI-  $\bar{\mathcal{A}}$  of  $\mathbb{H}$ , when  $\rho_t \neq \emptyset$ .

Proposition (2.16)[4]. FSAI- Æ of Æ is a FSAS-Æ of ₭ and the converse is not true.

**Definition** (2.17)[2]. Suppose  $(\mathbb{H}; +, -, 0)$  and

 $(\Omega; +', -', 0')$  be SA-algebras, the mapping

 $\mathfrak{A}: (\mathbb{H}; +, -, 0) \rightarrow (\mathfrak{Q}; +', -', 0')$  is named **a** 

**homomorphism** if it fulfills:

 $\mathfrak{A}(\mathtt{U}+\xi)=\mathfrak{A}(\mathtt{U})+{}^{'}\mathfrak{A}(\xi)\;,\;\;\mathfrak{A}(\mathtt{U}-\xi)=\mathfrak{A}(\mathtt{U})-{}^{'}\mathfrak{A}(\xi),$ for all  $\Psi, \xi \in \mathbb{H}$ .

**Definition** (2.18)[7,8]. Suppose  $\mathfrak{A}: (\mathbb{H}; +, -,0) \rightarrow$  $(\mathfrak{Q};+',-',0')$  be a mapping nonempty sets  $\mathbb{H}$ and  $\mathbb{Q}$  respectively. If  $\rho$  is a fuzzy subset of IC, then the fuzzy subset  $\beta$  of  $\mathbb{Q}$  defined by:

$$\mathfrak{A}(\rho)(\xi) = \begin{cases} \sup\{\rho(\mathbf{y}) \colon \mathbf{y} \in \mathfrak{A}^{-1}(\xi)\} & \text{if } \mathfrak{A}^{-1}(\xi) \\ = \{\mathbf{y} \in \mathcal{H}, \mathfrak{A}(\mathbf{y}) = \xi\} \neq \emptyset \\ \text{ot} \cap \text{erwise} \end{cases}$$

is known as the image of  $\rho$  under  $\mathfrak{A}$ .

Similarly if  $\beta$  is a fuzzy subset of  $\mathbb{Q}$ , then the fuzzy subset  $\rho = (\beta \circ \mathfrak{A})$  of IE

(i.e the fuzzy subset defined by  $\rho$  ( $\Psi$ ) =  $\beta$  ( $\Psi$  ( $\Psi$ )) for all  $\Psi \in \mathbb{H}$  is named the pre-image of  $\beta$  under  $\Psi$ . Theorem (2.19)[2]. 1- An onto homomorphic pre-image of a FSAS- $\bar{\mathcal{AE}}$  is also a FSAS- $\bar{\mathcal{AE}}$ .

2- An onto homomorphic pre-image of a FSAI-  $\bar{\mathcal{A}}$  is also a FSAI-  $\bar{\mathcal{A}}$ .

**Definition (2.20)[7,8].** A fuzzy subset  $\rho$  of a set  $\mathbb{R}$  has **sup property** if for any subset T of  $\mathbb{R}$ ,

there exist  $t_0 \in T$  such that  $\rho(t_0) = \sup {\{\rho(t) | t \in T\}}$ .

**Theorem** (2.21)[1]. Let  $\mathfrak{A}$ : ( $\mathbb{H}$ ; +, -,0)  $\rightarrow$ 

 $(\mathfrak{Q}; +', -', 0')$  be a homomorphism between *SA*-algebras IC and  $\mathfrak{Q}$  respectively.

1- For every FSAS- $\bar{\mathbb{A}}$ ,  $\rho$  of  $\mathbb{K}$  and with sup property,  $\mathfrak{A}(\rho)$  is a FSAS- $\bar{\mathbb{A}}$  of  $\mathbb{Q}$ .

2- For every FSAI-  $\bar{\mathbb{A}}$ ,  $\rho$  of  $\mathbb{H}$  and with sup property,  $\mathfrak{A}(\rho)$  is a FSAI-  $\bar{\mathbb{A}}$  of  $\mathbb{Q}$ .

**Definition** (2.22)[9]. Assume (IE; +, -,0) be  $\bar{\mathcal{A}}$ , a fuzzy subset  $\rho$  of IE is named an anti-fuzzy

**SA-subalgebra of**  $\mathbb{H}$  if for all  $\Psi, \xi \in \mathbb{H}$ ,

 $AFSAS_1) \rho(\Psi + \xi) \leq \max \{ \rho(\Psi), \rho(\xi) \},$ 

AFSAS<sub>2</sub>)  $\rho(\Psi - \xi) \leq max\{\mu(\Psi), \rho(\xi)\}$ . And we will symbliz it by AFSAS- $\bar{\mathcal{A}}$ 

**Proposition** (2.23)[9]. Suppose  $\rho$  be an AFSAS- $\bar{\mathcal{A}}$  of  $\bar{\mathcal{A}}$ .

1- If  $\rho$  is an AFSAS- $\not =$  of  $\not =$  , then it satisfies for any  $t \in [0,1], \ L(\rho,t) \neq \emptyset$ 

implies  $L(\rho,t)$  is a FSAS- $\bar{\mathcal{A}}$  of  $\mathbb{H}$ .

2- If  $L(\rho, t)$  is a FSAS- $\bar{\mathcal{A}}$  of IC, for all  $t \in [0, 1]$ ,  $L(\rho, t) \neq \emptyset$ ,

then  $\rho$  is an AFSAS- $\bar{\mathcal{AE}}$  of IC.

**Definition** (2.24)[9]. Let ( $\mathbb{H}$ ; +, -,0) be  $\overline{\mathbb{H}}$ ,  $\rho$  is named an anti-fuzzy SA-ideal of  $\mathbb{H}$ 

if it fulfills the following conditions, for all  $\Psi$ ,  $\xi$ ,  $\varsigma \in \mathbb{R}$ , (AFSAI<sub>1</sub>)  $\rho$  (0)  $\leq \rho$  ( $\Psi$ ),

(AFSAI<sub>2</sub>)  $\rho(\Psi + \xi) \leq max\{\rho(\Psi + \zeta), \rho(\xi - \zeta)\}.$ 

And we will symbliz it by AFSAI- Æ

**Proposition (2.25)[9].** Let  $\rho$  be an anti-fuzzy subset of  $\bar{\mathcal{A}}$ .

1- If  $\rho$  is an AFSAI-  $\bar{\mathbb{A}}$  of  $\mathbb{H}$  , then it fulfills for any  $t\!\in\![0,1], L(\rho,t)\neq\emptyset$ 

implies  $L(\rho, t)$  is a FSAI-  $\bar{\mathcal{A}}$  of IC.

2- If  $L(\rho, t)$  is a FSAI-  $\bar{\mathcal{A}}$  of IC, for all  $t \in [0, 1]$ ,  $L(\rho, t) \neq \emptyset$ ,

then  $\rho$  is an AFSAS- $\bar{\mathcal{AE}}$  of  $\mathbb{H}$ .

**Definition** (2.26)[9]. Assume  $\mathfrak{A}$ : (IE; +, -,0)  $\rightarrow$ 

 $(\mathfrak{Q}; +', -', 0')$  be a mapping nonempty SA-algebras  $\mathfrak{K}$  and  $\mathfrak{Q}$  respectively. If  $\rho$  is anti-fuzzy subset of  $\mathfrak{K}$ , then the anti-fuzzy subset  $\beta$  of  $\mathfrak{Q}$  defined by:

the anti-fuzzy subset 
$$\beta$$
 of  $\mathfrak Q$  defined by: 
$$\mathfrak U(\rho)(\xi) = \begin{cases} \inf\{\rho(\mathfrak A) \colon \mathfrak A \in \mathfrak U^{-1}(\xi)\} \text{ if } \mathfrak U^{-1}(\xi) \\ = \{\mathfrak A \in \mathfrak K, \mathfrak U(\mathfrak A) = \xi\} \neq \emptyset \\ 0 \text{ ot } \Box \text{ erwise} \end{cases}$$

is known as the image of  $\rho$  under  $\mathfrak{A}$ .

Similarly if  $\beta$  is anti-fuzzy subset of  $\mathbb Q$ , then the fuzzy subset  $\rho = (\beta \circ \mathfrak A)$  of IE (i.e the anti-fuzzy subset defined by  $\rho$  ( $\mathfrak A$ ) =

(i.e the anti-fuzzy subset defined by  $\rho$  ( $\Psi$ ) =  $\beta$  ( $\Psi$  ( $\Psi$ )),

for all  $\mathfrak{A} \in \mathbb{H}$  is named the pre-image of  $\beta$  under  $\mathfrak{A}$ . **Theorem (2.27)[9].** 1- An onto homomorphic pre-image of AFSAS- $\overline{\mathbb{H}}$  is also AFSAS- $\overline{\mathbb{H}}$ .

2- An onto homomorphic pre-image of an AFSAI- Æ is also AFSAI- Æ.

**Definition (2.28)[9].** A fuzzy subset  $\rho$  of a set  $\mathbb{R}$  has inf property if for any subset T of  $\mathbb{R}$ ,

there exist  $t_0 \in T$  such that  $\rho(t_0) = \inf \{ \rho(t) | t \in T \}$ .

**Theorem (2.29)[9].** Let  $\mathfrak{A}: (\mathbb{H}; +, -, 0) \to (\mathfrak{Q}; +', -', 0')$  be a homomorphism between *SA*-algebras  $\mathbb{H}$  and  $\mathbb{Q}$  separately.

1- For every AFSAS- $\bar{\mathcal{A}}$ ,  $\rho$  of  $\mathbb{H}$  and with inf property,  $\mathfrak{A}(\rho)$  is AFSAS- $\bar{\mathcal{A}}$  of  $\mathbb{Q}$ .

2- For every AFSAI-  $\bar{\mathcal{A}}$ ,  $\rho$  of  $\mathbb{R}$  and with inf property,  $\mathfrak{A}(\rho)$  is AFSAI-  $\bar{\mathcal{A}}$  of  $\mathbb{Q}$ .

**Remark (2.30)[3].** An interval number is  $\tilde{\mathfrak{y}} = [\mathfrak{y}^-, \mathfrak{y}^+]$ , where  $0 \le \mathfrak{y}^- \le \mathfrak{y}^+ \le 1$ .

Let I be a closed unit interval, (i.e., I = [0, 1]). Let D[0, 1] denote the family of all closed subintervals of I = [0, 1], that is,

$$D[0, 1] = \{ \widetilde{\mathfrak{y}} = [\mathfrak{y}^-, \mathfrak{y}^+] \mid \mathfrak{y}^- \leq \mathfrak{y}^+, \text{ for } \mathfrak{y}^-, \mathfrak{y}^+ \in I \}.$$

Now, we describe what is known as cultured minimum (briefly, rmin) of two element in D[0,1].

**Definition (2.31)[3].** We also define the symbols  $(\geq)$ ,  $(\leq)$ , (=), "rmin" and "rmax"

in situation of two elements in D[0, 1].

Consider two interval numbers (elements numbers)

 $\widetilde{\mathfrak{y}} = [\mathfrak{y}^-, \mathfrak{y}^+]$ ,  $\widetilde{\mathfrak{w}} = [\mathfrak{w}^-, \mathfrak{w}^+]$  in D[0, 1]: Then

(1)  $\widetilde{\mathfrak{y}} \geq \widetilde{\mathfrak{w}}$  if and only if,  $\mathfrak{y}^- \geq \mathfrak{w}^-$  and  $\mathfrak{y}^+ \geq \mathfrak{w}^+$ ,

(2)  $\tilde{\mathfrak{y}} \leq \tilde{\mathfrak{w}}$  if and only if,  $\mathfrak{y}^- \leq \mathfrak{w}^-$  and  $\mathfrak{y}^+ \leq \mathfrak{w}^+$ ,

- (3)  $\tilde{y} = \tilde{w}$  if and only if, y = w and  $y = w^+$ ,
- (4) rmin  $\{\tilde{\mathfrak{y}}, \tilde{\mathfrak{w}}\}=[\min \{\mathfrak{y}^-, \mathfrak{w}^-\}, \min \{\mathfrak{y}^+, \mathfrak{w}^+\}],$
- (5) rmax  $\{\tilde{\mathfrak{y}}, \ \tilde{\mathfrak{w}}\}=[\max \{\mathfrak{y}^-, \mathfrak{w}^-\}, \max \{\mathfrak{y}^+, \mathfrak{w}^+\}],$

**Remark (2.32)[3].** It is obvious that  $(D[0, 1], \leq, \vee, \wedge)$  is a complete lattice with

 $\tilde{0} = [0, 0]$  as its least element and  $\tilde{1} = [1, 1]$  as its greatest element.

Let  $\tilde{y}_i \in D[0, 1]$  where  $i \in \Lambda$ . We define  $r \inf_{i \in \Lambda} \tilde{y} = [r \inf_{i \in \Lambda} \tilde{y}^-, r \inf_{i \in \Lambda} \tilde{y}^+], r \sup_{i \in \Lambda} \tilde{y} = [r \sup_{i \in \Lambda} \tilde{y}^-, r \sup_{i \in \Lambda} \tilde{y}^+]$ .

**Definition** (2.33)[7,8]. An interval-valued fuzzy subset  $\tilde{\rho}_A$  on  $\bar{\mathcal{A}}$  is defined as

 $\tilde{
ho}_{A} = \{ < \mathtt{Y}, \left[ 
ho_{A}^{-} \left( \mathtt{Y} \right), 
ho_{A}^{+} \left( \mathtt{Y} \right) \right] > \mid \mathtt{Y} \in \mathbb{H}^{-} \}$  .

Where  $\rho_A^-$  ( $\Psi$ )  $\leq \rho_A^+$  ( $\Psi$ ), for all  $\Psi \in \mathbb{R}$ . Then the fuzzy subsets  $\rho_A^-$ :  $\mathbb{R} \to [-1, 0]$  and

 $\rho_A^+\colon \mathrm{IC} \to [0,\,1]$  are named a **lower fuzzy subset and** an **upper fuzzy subset** of  $\tilde{\rho}_A$  separately .

Let  $\tilde{\rho}_A$  ( $\Psi$ ) = [ $\rho_A^-$  ( $\Psi$ ) ,  $\rho_A^+$  ( $\Psi$ ) ] ,  $\tilde{\rho}_A$ : IE  $\to$  D[0, 1], then A = {< $\Psi$ ,  $\tilde{\rho}_A$  ( $\Psi$ ) >|  $\Psi$   $\in$  IE} .

**Remark** (2.34)[1]. Let I€ be the universe of discourse.

A bipolar fuzzy subset  $\rho$  of  $\mathcal{H}$ 

is an object ensuring the form

 $\Phi = \big\{ \left. (\mathbf{y}, \rho_{\Phi}^{\mathit{N}}(\mathbf{y}), \rho_{\Phi}^{\mathit{P}}(\mathbf{y}) \right) \big| \mathbf{y} \in \mathbf{H} \big\},$ 

where  $\mu_{\Phi}^N : \mathbb{H} \to [-1, 0]$  and  $\mu_{\Phi}^P : \mathbb{H} \to [0, 1]$  are mappings.

The positive membership degree  $\rho_\Phi^P$  (4) denoted the satisfaction degree

of an element IC to the property corresponding to a bipolar-valued fuzzy

 $\Phi = \{ (\Psi, \rho_{\Phi}^{N}(\Psi), \rho_{\Phi}^{P}(\Psi)) | \Psi \in \mathbb{H} \}, \text{ and the negative membership degree}$ 

 $ho_\Phi^N(\mathbf{Y})$  means the satisfaction degree of IC to some implicit counter-property of

 $\Phi = \{ (\Psi, \rho_{\Phi}^{N}(\Psi), \rho_{\Phi}^{P}(\varkappa)) | \Psi \in \mathbb{H} \}.$  For the sake of plainness, we shall use the symbol

 $\Phi = (\mathbb{H}: \rho_{\Phi}^N, \rho_{\Phi}^P)$ , for the bipolar fuzzy set

 $\Phi = \{ (\Psi, \rho_{\Phi}^{N}(\Psi), \rho_{\Phi}^{P}(\Psi)) | \Psi \in \mathbb{H} \}, \text{ and use the conception of bipolar fuzzy sets instead of the conception of bipolar-valued fuzzy sets.}$ 

**Definition** (2.35)[5]. A bipolar fuzzy subset  $\Phi = (\mathbb{H}: \rho_{\Phi}^{N}, \rho_{\Phi}^{P})$  of  $\bar{\mathcal{H}}$  is named **a** 

**bipolar fuzzy** *SA***-subalgebra of**  $\mathbb{R}$  if it fulfills the next properties: for any  $\Psi$ ,  $\xi \in \mathbb{R}$ ,

- $1. \qquad \rho_{\Phi}^N(\mathbf{y}+\boldsymbol{\xi}) \ \leq \ \max\left\{\, \rho_{\Phi}^N(\mathbf{y}), \rho_{\Phi}^N(\boldsymbol{\xi})\right\},$
- 2.  $\rho_{\Phi}^{N}(\Psi \xi) \leq \max\{\rho_{\Phi}^{N}(\Psi), \rho_{\Phi}^{N}(\xi)\},$

- 3.  $\rho_{\Phi}^{P}(\Psi + \xi) \geq \min \{ \rho_{\Phi}^{P}(\Psi), \rho_{\Phi}^{P}(\xi) \}$  and
- 4.  $\rho_{\Phi}^{P}(\Psi \xi) \geq min \{ \rho_{\Phi}^{P}(\Psi), \rho_{\Phi}^{P}(\xi) \}$ . And we will symbliz it by BFSAS- $\bar{\mathcal{A}}$

**Definition** (2.36)[5]. A bipolar fuzzy subset

 $\Phi = (\mathbb{H}: \rho_{\Phi}^{N}, \rho_{\Phi}^{P}) \text{ of } \bar{\mathcal{H}} \text{ is named}$ 

**a bipolar fuzzy** *SA***-ideal of**  $\mathcal{H}$  if it fulfills the following: for any  $\Psi$ ,  $\xi$ ,  $\zeta \in \mathbb{H}$ ,

- 1.  $\rho_{\Phi}^{N}(0) \leq \rho_{\Phi}^{N}(\Psi)$ ,
- 2.  $\rho_{\Phi}^{P}(0) \ge \rho_{\Phi}^{P}(\Psi)$ ,
- 3.  $\rho_{\Phi}^{N}(\Psi + \xi) \leq \max \{ \rho_{\Phi}^{N}(\Psi + \zeta), \rho_{\Phi}^{N}(\xi \zeta) \}$  and  $\rho_{\Phi}^{P}(\Psi + \xi) \geq \min \{ \rho_{\Phi}^{P}(\Psi + \zeta), \rho_{\Phi}^{P}(\xi \zeta) \}$ . And we will symbliz it by BFSAI-  $\bar{\mathcal{A}}$ .

**Definition** (2.37)[7,8]. Assume : ( $\mathbb{H}$ ; +, -,0)  $\rightarrow$ 

 $(\mathfrak{Q};+',-',0')$  be a mapping from set IC

into a set  $\mathbb{Q}$ . let B be a bipolar valued fuzzy subset of  $\mathbb{Q}$ . Then the inverse image of B,

denoted by  $\mathfrak{A}^{-1}(B)$ , is a bipolar valued fuzzy subset of  $\mathbb{R}$ , with the membership function given by

 $\rho_{\mathfrak{A}^{-1}(B)}(\mathfrak{A}) = \tilde{\rho}_B(\mathfrak{A}(\mathfrak{A})), \text{ for all } \mathfrak{A} \in \mathbb{H}.$ 

**Proposition** (2.38)[6]. Assume : ( $\mathbb{H}$ ; +, -,0)  $\rightarrow$  ( $\mathbb{Q}$ ; +', -',0') be a mapping

from set IC into set  $\mathfrak{Q}$ , let  $\tilde{\rho}_{\mathbb{Y}} = [(\tilde{\rho}_{\mathbb{Y}})^N, (\tilde{\rho}_{\mathbb{Y}})^P]$ and  $\tilde{n}_{\mathbb{Y}} = [(\tilde{n}_{\mathbb{Y}})^N, (\tilde{n}_{\mathbb{Y}})^P]$  be bipolar valued fuzzy subsets

of sets IC and Q separately. Then

- (1)  $\mathfrak{A}^{-1}(\tilde{n}_{\mathsf{Y}}) = [\mathfrak{A}^{-1}((\tilde{n}_{\mathsf{Y}})^N), \mathfrak{A}^{-1}((\tilde{n}_{\mathsf{Y}})^P)],$
- (2)  $\mathfrak{A}(\tilde{\rho}_{\mathbf{Y}}) = [\mathfrak{A}((\tilde{\rho}_{\mathbf{Y}})^N), \mathfrak{A}((\tilde{\rho}_{\mathbf{Y}})^P)].$

# 3. BIPOLAR VALUED FUZZY SA-SUBALGEBRAS OF SA-ALGEBRA

In the part, the conception of the bipolar valued fuzzy SA-subalgebras of SA-algebra is presented. Some theorems and properties are itemized and ascertained.

**Definition (3.1):**A interval valued fuzzy subset  $V = \{ < \Psi, \tilde{\rho}_{V}(\Psi) > | \Psi \in \mathbb{H} \} = \emptyset$ 

 $\{<\mathtt{Y}, [\rho_{\breve{Y}}^-(\mathtt{Y}), \rho_{\breve{Y}}^+(\mathtt{Y}) \; ] > \mid \mathtt{Y} \in \mathsf{IC}\} \; \mathrm{of} \, \bar{\mathcal{A}} \; \mathrm{is \; called}$ 

a bipolar valued fuzzy SA-subalgebra denoted by (BVFSAS-  $\bar{\mathcal{A}}$  ) of  $\stackrel{.}{\mathbb{H}}$ 

$$\begin{split} & \boldsymbol{\gamma}^{(N,P)} = \{ < \boldsymbol{\mathbf{y}}, \, (\tilde{\rho}_{\boldsymbol{\gamma}})^{N} \, (\boldsymbol{\mathbf{y}}), \, (\tilde{\rho}_{\boldsymbol{\gamma}})^{P} \, (\boldsymbol{\mathbf{y}}) > \mid \boldsymbol{\varkappa} \in \boldsymbol{\mathbf{H}} \} \\ & = \, \{ < \boldsymbol{\mathbf{y}}, \, (\boldsymbol{\overline{\rho}_{\boldsymbol{\gamma}}^{N}}) \, (\boldsymbol{\mathbf{y}}), \, (\boldsymbol{\overline{\rho}_{\boldsymbol{\gamma}}^{P}}) \, (\boldsymbol{\mathbf{y}}) > \mid \boldsymbol{\mathbf{y}} \in \boldsymbol{\mathbf{H}} \} \, , \\ & \boldsymbol{\boldsymbol{\gamma}}^{(N,P)} = < \, (\tilde{\rho}_{\boldsymbol{\mathbf{y}}})^{N}, (\tilde{\rho}_{\boldsymbol{\mathbf{y}}})^{P} \, > , \, \text{if for all } \, \boldsymbol{\mathbf{y}}, \boldsymbol{\boldsymbol{\xi}} \in \boldsymbol{\mathbf{H}}. \end{split}$$

$$1-(\tilde{\rho}_{\chi})^{N}(\Psi+\xi) \leq \max\{(\tilde{\rho}_{\chi})^{N}(\Psi),(\tilde{\rho}_{\chi})^{N}(\xi)\},$$

$$2\text{-}(\tilde{\rho}_{\mathbb{Y}})^{P}(\mathbf{y}+\xi) \geq \min\{(\tilde{\rho}_{\mathbb{Y}})^{P}(\mathbf{y}), (\tilde{\rho}_{\mathbb{Y}})^{P}(\xi)\},\$$

3- 
$$(\tilde{\rho}_{\S})^N (\Psi - \xi) \leq max\{(\tilde{\rho}_{\S})^N (\Psi), (\tilde{\rho}_{\S})^N (\xi)\}$$
 and 4-  $(\tilde{\rho}_{\S})^P (\Psi - \xi) \geq min\{(\tilde{\rho}_{\S})^P (\Psi), (\tilde{\rho}_{\S})^P (\xi)\}$ . i.e.,

$$1 - \widetilde{(\rho^N_{\mathbb{Y}})} \, (\mathtt{\Psi} + \xi) \, \leq r \, max \{ \, \widetilde{(\rho^N_{\mathbb{Y}})} (\mathtt{\Psi}), \, \widetilde{(\rho^N_{\mathbb{Y}})} (\xi) \},$$

$$2 - \widetilde{(\rho_{\mathbb{Y}}^{P})} (\mathbf{y} + \xi) \geq rmin\{\widetilde{(\rho_{\mathbb{Y}}^{P})}(\mathbf{y}), \widetilde{(\rho_{\mathbb{Y}}^{P})}(\xi)\},$$

3- 
$$(\widetilde{\rho_{\mathbb{Y}}^N})$$
  $(\mathtt{\Psi} - \xi) \leq rmax\{(\widetilde{\rho_{\mathbb{Y}}^N})(\mathtt{\Psi}), (\widetilde{\rho_{\mathbb{Y}}^N})(\xi)\}$  and

$$4 - \widetilde{(\rho_{\chi}^{P})} (\Psi - \xi) \geq r \min\{ \widetilde{(\rho_{\chi}^{P})} (\Psi), \widetilde{(\rho_{\chi}^{P})} (\xi) \}.$$

1- 
$$(\rho_{\bar{Y}}^-)^N (\Psi + \xi) \le max\{ (\rho_{\bar{Y}}^-)^N (\Psi), (\rho_{\bar{Y}}^-)^N (\xi) \}$$
 and  $(\rho_{\bar{Y}}^-)^P (\Psi + \xi) \ge min\{ (\rho_{\bar{Y}}^-)^P (\Psi), (\rho_{\bar{Y}}^-)^P (\xi) \}.$ 

$$\begin{aligned} &2\text{-}(\ \rho_{\mathbb{Y}}^{+})^{N}\left(\mathbf{\Psi}+\xi\right) \ \leq \max\{(\ \rho_{\mathbb{Y}}^{+})^{N}(\mathbf{\Psi}),(\ \rho_{\mathbb{Y}}^{+})^{N}(\xi)\} \ \text{ and } \\ &(\ \rho_{\mathbb{Y}}^{+})^{P}\left(\mathbf{\Psi}+\xi\right) \ \geq \min\{(\ \rho_{\mathbb{Y}}^{+})^{P}(\mathbf{\Psi}),\left(\ \rho_{\mathbb{Y}}^{+})^{P}(\xi)\right\}. \end{aligned}$$

3- 
$$(\rho_{\chi}^{-})^{N} (\Psi - \xi) \leq max\{ (\rho_{\chi}^{-})^{N} (\Psi), (\rho_{\chi}^{-})^{N} (\xi) \}$$
 and  $(\rho_{\chi}^{-})^{P} (\Psi - \xi) \geq min\{ (\rho_{\chi}^{-})^{P} (\Psi), (\rho_{\chi}^{-})^{P} (\xi) \}.$ 

4-
$$(\rho_{\chi}^{+})^{N}(\Psi - \xi) \leq \max\{(\rho_{\chi}^{+})^{N}(\Psi), (\rho_{\chi}^{+})^{N}(\xi)\}$$
 and  $(\rho_{\chi}^{+})^{P}(\Psi - \xi) \geq \min\{(\rho_{\chi}^{+})^{P}(\Psi), (\rho_{\chi}^{+})^{P}(\xi)\}.$ 

**Remark** (3.2): A bipolar valued fuzzy subset  $Y^{(N,P)}$  =  $<(\tilde{\rho}_{\rm Y})^N,(\tilde{\rho}_{\rm Y})^P>$ 

of  $\bar{\mathcal{A}}$ , for all  $\Psi \in \mathcal{H}$ , thus,

Since 
$$(\rho_{\ddot{\mathbf{Y}}}^-)^N(\mathbf{Y}) = (\rho_{\ddot{\mathbf{Y}}}^N)^-(\mathbf{Y})$$
,  $(\rho_{\ddot{\mathbf{Y}}}^-)^P(\mathbf{Y}) = (\rho_{\ddot{\mathbf{Y}}}^P)^-(\mathbf{Y})$ ,

$$(\rho_{\mathbb{Y}}^+)^N(\mathbf{Y}) = (\rho_{\mathbb{Y}}^N)^+(\mathbf{Y}) \text{ and } (\rho_{\mathbb{Y}}^+)^P(\mathbf{Y}) = (\rho_{\mathbb{Y}}^P)^+(\mathbf{Y}),$$

then 
$$(\tilde{\rho}_{\mathbf{Y}})^{N}(\mathbf{Y}) = [(\rho_{\mathbf{Y}}^{-})^{N}(\mathbf{Y}), (\rho_{\mathbf{Y}}^{+})^{N}(\mathbf{Y})] =$$

$$[(\rho_{\mathbf{Y}}^N)^-(\mathbf{Y}),(\rho_{\mathbf{Y}}^N)^+(\mathbf{Y})] = \widetilde{(\rho_{\mathbf{Y}}^N)}(\mathbf{Y})$$
 and

$$(\tilde{\rho}_{\mathbb{Y}})^{P}(\mathbf{y}) = \left[ (\rho_{\mathbb{Y}}^{-})^{P}(\mathbf{y}), \left( \rho_{\mathbb{Y}}^{+})^{P}(\mathbf{y}) \right] =$$

$$\left[(\rho_{\mathbb{Y}}^{P})^{-}(\mathbb{Y}), \left(\rho_{\mathbb{Y}}^{P}\right)^{+}(\mathbb{Y})\right] = \widehat{\left(\rho_{\mathbb{Y}}^{P}\right)}(\mathbb{Y}).$$

**Example (3.3):** Let  $\mathbf{IC} = \{0, a, b, c\}$  in which the operations (+, -) be define by the following tables:

| + | 0 | a | b | с |
|---|---|---|---|---|
| 0 | 0 | a | b | с |
| a | a | b | с | 0 |
| b | b | c | 0 | a |
| С | с | 0 | a | b |

| _ | 0 | a | b | c |
|---|---|---|---|---|
| 0 | 0 | С | b | a |
| a | a | 0 | С | b |
| b | b | a | 0 | С |
| С | С | b | a | 0 |

Then (IE; +, -, 0) is an SA-algebra.  $Y^{(N,P)} = <$  $(\tilde{\rho}_{\rm Y})^N$ ,  $(\tilde{\rho}_{\rm Y})^P$  >

of  $\mathbb{H}$  where  $I = \{0,b\}$  is a SAS- $\bar{\mathbb{H}}$  of  $\mathbb{H}$ , such that: The fuzzy subsets  $\rho^+$ :  $\mathbb{H} \to [0,1]$  and  $\rho^-$ :  $\mathbb{H} \to [-1,0]$ by:

$$, \mathbf{Y}^{(N,P)} \; (\mathbf{Y}) = \begin{cases} \left[ [-0.6, -0.3], [0.3, 0.9] \right] & \textit{if} \; \mathbf{Y} = \{0, b\} \\ \left[ [-0.7, -0.4], [0.2, 0.6] \right] & \textit{otherwise} \end{cases}$$
 
$$, \mathbf{Y}^{(N,P)} \; (\mathbf{Y}) \; \text{is BVFSAS-} \bar{\mathcal{H}} \; \; \text{of} \; \mathbf{H} \in \mathbb{C}.$$

**Proposition (3.4):** If 
$$\mathbb{Y}^{(N,P)} = \langle (\tilde{\rho}_{\mathbb{Y}})^N, (\tilde{\rho}_{\mathbb{Y}})^P \rangle$$
 is a **BVFSAS-**  $\bar{\mathcal{H}}$ , then  $(\tilde{\rho}_{\mathbb{Y}})^N(0) \leq (\tilde{\rho}_{\mathbb{Y}})^N(\mathbb{Y})$  and  $(\tilde{\rho}_{\mathbb{Y}})^P(0) \geq (\tilde{\rho}_{\mathbb{Y}})^P(\mathbb{Y})$ , for all  $\mathbb{Y} \in \mathbb{H}$ .

**Proof:** For all  $\mathcal{X}, \xi \in \mathbb{H}$  and  $\mathcal{X} = \xi$ , we have  $(\rho_{\mathbb{Y}}^N)(0) = (\rho_{\mathbb{Y}}^N)(\mathbb{Y} + \xi) \leq r \max\{(\rho_{\mathbb{Y}}^N)(\mathbb{Y}), (\rho_{\mathbb{Y}}^N)(\xi)\}$  and  $(\rho_{\mathbb{Y}}^P)(0) = (\rho_{\mathbb{Y}}^P)(\mathbb{Y} + \xi) \geq r \min\{(\rho_{\mathbb{Y}}^P)(\mathbb{Y}), (\rho_{\mathbb{Y}}^P)(\xi)\}$ , then  $(\tilde{\rho}_{\mathbb{Y}})^N(0) = [(\rho_{\mathbb{Y}}^-)^N(0), (\rho_{\mathbb{Y}}^+)^N(0)]$ 

$$= [(\rho_{\mathbb{Y}}^N)^-(0), (\rho_{\mathbb{Y}}^N)^+(0)]$$

$$\leq \max\{[(\rho_{\mathbb{Y}}^-)^N(\mathbb{Y}), (\rho_{\mathbb{Y}}^+)^N(\mathbb{Y})], [(\rho_{\mathbb{Y}}^-)^N(\mathbb{Y}), (\rho_{\mathbb{Y}}^+)^N(\mathbb{Y})]\}$$

$$= [(\rho_{\mathbb{Y}}^-)^N(\mathbb{Y}), (\rho_{\mathbb{Y}}^+)^N(\mathbb{Y})] = (\tilde{\rho}_{\mathbb{Y}}^-)^N(\mathbb{Y})$$
 and  $(\tilde{\rho}_A)^P(0) = [(\rho_{\mathbb{Y}}^-)^P(0), (\rho_{\mathbb{Y}}^+)^P(0)]$ 

$$= [(\rho_{\mathbb{Y}}^-)^-(0), (\rho_{\mathbb{Y}}^-)^+(0)]$$

$$\geq \min\{\left[\left(\rho_{\chi}^{-}\right)^{P}(\mathbf{Y}),\left(\rho_{\chi}^{+}\right)^{P}(\mathbf{Y})\right],\left[\left(\rho_{\chi}^{-}\right)^{P}(\mathbf{Y}),\left(\rho_{\chi}^{+}\right)^{P}(\mathbf{Y})\right]\}$$

$$=\left[\left(\rho_{\chi}^{-}\right)^{P}(\mathbf{Y}),\left(\rho_{\chi}^{+}\right)^{P}(\mathbf{Y})\right]=\left(\tilde{\rho}_{\chi}\right)^{P}(\mathbf{Y})$$

$$\left(\tilde{\rho}_{\chi}\right)^{N}(0)\leq \left(\tilde{\rho}_{\chi}\right)^{N}(\mathbf{Y}) \text{ and } \left(\tilde{\rho}_{\chi}\right)^{P}(0)\geq \left(\tilde{\rho}_{\chi}\right)^{P}(\mathbf{Y}), \text{ for all } \mathbf{Y}\in \mathrm{IC}.$$

**Proposition** (3.5): Let  $\chi^{(N,P)} = \langle (\tilde{\rho}_{\chi})^N, (\tilde{\rho}_{\chi})^P \rangle$  be a BVFSAS-Æ,

if there exist a sequence ( $\{\Psi_n\}$ ) of  $\mathbb{H}$  such that  $\lim_{n\to\infty} (\tilde{\rho}_{\mathbf{V}})^N(\mathbf{\Psi}_n) = [0,0],$ 

and  $\lim (\tilde{\rho}_{\chi})^P(\Psi_n) = [1,1]$ , then  $(\tilde{\rho}_{\chi})^N(0) = [0,0]$  and  $(\tilde{\rho}_{\chi})^{P}(0) = [1,1].$ 

#### **Proof:**

By Proposition (3.4), we have  $(\tilde{\rho}_{V})^{N}(0) \leq (\tilde{\rho}_{V})^{N}(\Psi)$ ,

$$(\tilde{\rho}_{\mathbf{y}})^{P}(0) \ge (\tilde{\rho}_{\mathbf{y}})^{P}(\mathbf{y}), \text{ for all } \mathbf{y} \in \mathbb{H}, \text{ then } (\tilde{\rho}_{\mathbf{y}})^{N}(0) \le (\tilde{\rho}_{\mathbf{y}})^{N}(\mathbf{y}_{n}) \text{ and}$$

$$(\tilde{\rho}_{\mathsf{Y}})^{p}(0) \geq (\tilde{\rho}_{\mathsf{Y}})^{p}(\mathbf{\Psi}_{n})$$
, for every positive integer n.

Consider the inequality  $[0,0] \le (\tilde{\rho}_{V})^{N}(0) \le$ 

$$\lim_{n \to \infty} (\tilde{\rho}_{\mathbf{V}})^{N}(\mathbf{u}_{n}) = [0,0]$$

and 
$$[1,1] \ge (\tilde{\rho}_{\chi})^P(0) \ge \lim_{n \to \infty} (\tilde{\rho}_{\chi})^P(\mathfrak{A}_n) = [1,1].$$

Hence 
$$(\tilde{\rho}_{Y})^{N}(0) = [0,0]$$
 and  $(\tilde{\rho}_{Y})^{P}(0) = [1,1]$ .  $\triangle$ 

**Theorem (3.6):** A bipolar valued fuzzy subset  $V^{(N,P)} =$  $<(\tilde{\rho}_{\rm V})^N,(\tilde{\rho}_{\rm V})^P>{\rm of}\,\bar{\mathcal{A}}$ 

is a **BVFSAS-**  $\bar{\mathcal{A}}$  of  $\mathcal{H}$  if and only if,  $(\rho_{\mathcal{X}}^-)^N$  and  $(\rho_{\mathcal{X}}^+)^N$ are **AFSAS-**Æ of Æ

and  $(\rho_{\mathsf{Y}}^{-})^{P}$  and  $(\rho_{\mathsf{Y}}^{+})^{P}$  are **FSAS-**  $\bar{\mathcal{F}}$  of IC.

**Proof:** 

Suppose that  $\mathcal{V}^{(N,P)}$  is a **BVFSAS-**Æ of IC, then for all  $\Psi, \xi \in \mathbb{H}$ , we have  $[(\rho_{\mathsf{Y}}^{-})^{N}(\mathsf{Y}+\xi),(\rho_{\mathsf{Y}}^{+})^{N}(\mathsf{Y}+\xi)]=(\tilde{\rho}_{\mathsf{V}})^{N}(\mathsf{Y}+\xi)$  $\leq r \max\{(\tilde{\rho}_{\mathsf{Y}})^{N}(\mathsf{Y}),(\tilde{\rho}_{\mathsf{Y}})^{N}(\xi)\} =$  $r \max\{[(\rho_{Y}^{-})^{N}(Y), (\rho_{Y}^{+})^{N}(Y)], [(\rho_{Y}^{-})^{N}(\xi), (\rho_{Y}^{+})^{N}(\xi)]\}$  $[max\{(\rho_{Y}^{-})^{N}(\Psi),(\rho_{Y}^{+})^{N}(\Psi)\},max\{(\rho_{Y}^{-})^{N}(\xi),(\rho_{Y}^{+})^{N}(\xi)\}] =$  $[\max\{(\rho_{Y}^{-})^{N}(\Psi),(\rho_{Y}^{-})^{N}(\xi)\},\max\{(\rho_{Y}^{+})^{N}(\Psi),(\rho_{Y}^{+})^{N}(\xi)\}]$ .Therefore,  $(\rho_{\mathsf{V}}^{-})^{N}(\mathtt{\Psi} + \xi) \leq \max\{(\rho_{\mathsf{V}}^{-})^{N}(\mathtt{\Psi}), (\rho_{\mathsf{V}}^{-})^{N}(\xi)\}$ and  $(\rho_{Y}^{+})^{N}(\Psi + \xi) \leq \max\{(\rho_{Y}^{+})^{N}(\Psi), (\rho_{Y}^{+})^{N}(\xi)\}$ . Also,  $[(\rho_{\mathsf{Y}}^{-})^{P}(\mathsf{Y} + \xi), (\rho_{\mathsf{Y}}^{+})^{P}(\mathsf{Y} + \xi)] = (\tilde{\rho}_{\mathsf{Y}})^{P}(\mathsf{Y} + \xi)$  $\geq r \min\{(\tilde{\rho}_{V})^{P}(\Psi), (\tilde{\rho}_{V})^{P}(\Psi)\}$ =  $r min\{[(\rho_{\mathbf{Y}}^{-})^{P}(\mathbf{Y}), (\rho_{\mathbf{Y}}^{+})^{P}(\mathbf{Y})], [(\rho_{\mathbf{Y}}^{-})^{P}(\xi), (\rho_{\mathbf{Y}}^{+})^{P}(\xi)]\}$ =  $[min\{(\rho_{V}^{-})^{P}(\Psi), (\rho_{V}^{+})^{P}(\Psi)\},$  $min\{(\rho_{Y}^{-})^{P}(\xi), (\rho_{Y}^{+})^{P}(\xi)\}\} =$  $[\min\{(\rho_{\mathbf{Y}}^{-})^{P}(\mathbf{Y}),(\rho_{\mathbf{Y}}^{-})^{P}(\xi)\},\min\{(\rho_{\mathbf{Y}}^{+})^{P}(\mathbf{Y}),(\rho_{\mathbf{Y}}^{+})^{P}(\xi)\}]$ Therefore,  $(\rho_{\mathsf{V}}^{-})^{P}(\mathsf{\Psi} + \xi) \ge \min\{(\rho_{\mathsf{V}}^{-})^{P}(\mathsf{\Psi}), (\rho_{\mathsf{V}}^{-})^{P}(\xi)\}$ and  $(\rho_{Y}^{+})^{P}(\Psi + \xi) \ge min\{(\rho_{Y}^{+})^{P}(\Psi), (\rho_{Y}^{+})^{P}(\xi)\}$ . Hence, we get that  $(\rho_{\mathbf{Y}}^{-})^{N}$  and  $(\rho_{\mathbf{Y}}^{+})^{N}$  are **AFSAS-** $\bar{\mathcal{A}}$ E of IE and  $(\rho_{\mathbf{Y}}^{-})^{P}$  and  $(\rho_{\mathbf{Y}}^{+})^{P}$  are **AFSAS-** $\bar{\mathcal{AE}}$  of IE. Conversely, if  $(\rho_{\mathbf{Y}}^{-})^{N}$  and  $(\rho_{\mathbf{Y}}^{+})^{N}$  are **AFSAS-**  $\bar{\mathcal{A}}$ **E** of IC and  $(\rho_{V}^{-})^{P}$  and  $(\rho_{V}^{+})^{P}$  are **FSAS-**  $\bar{\mathcal{A}}$  of IC, for all  $\Psi, \xi \in \mathbb{H}$ . Observe :  $(\tilde{\rho}_{\mathbb{Y}})^N(\mathbf{y}+\boldsymbol{\xi})=[(\rho_{\mathbb{Y}}^-)^N(\mathbf{y}+\boldsymbol{\xi}),(\rho_{\mathbb{Y}}^+)^N(\mathbf{y}+\boldsymbol{\xi})]\leq$  $[max\{(\rho_{V}^{-})^{N}(\Psi),(\rho_{V}^{-})^{N}(\xi)\},min\{(\rho_{V}^{+})^{N}(\Psi),(\rho_{V}^{+})^{N}(\xi)\}]$  $= r \max\{ [(\rho_{V}^{-})^{N}(\Psi), (\rho_{V}^{+})^{N}(\Psi)],$  $[(\rho_{X}^{-})^{N}(\xi), (\rho_{X}^{+})^{N}(\xi)]$  $= r \max\{(\tilde{\rho}_{\mathbf{Y}})^{N}(\mathbf{\Psi}), (\tilde{\rho}_{\mathbf{Y}})^{N}(\xi)\}.$  and  $(\tilde{\rho}_{\mathbb{Y}})^N(\mathbb{Y}-\xi)=[(\rho_{\mathbb{Y}}^-)^N(\mathbb{Y}-\xi),(\rho_{\mathbb{Y}}^+)^N(\mathbb{Y}-\xi)]\leq$  $[max\{(\rho_{Y}^{-})^{N}(\Psi),(\rho_{Y}^{-})^{N}(y)\},min\{(\rho_{Y}^{+})^{N}(\Psi),(\rho_{Y}^{+})^{N}(\xi)\}]$  $r \max\{[(\rho_{Y}^{-})^{N}(\Psi), (\rho_{Y}^{+})^{N}(\Psi)], [(\rho_{Y}^{-})^{N}(\xi), (\rho_{Y}^{+})^{N}(\xi)]\}$ =  $r \max\{(\tilde{\rho}_{\chi})^{N}(\Psi), (\tilde{\rho}_{\chi})^{N}(\xi)\}$ . Also  $(\tilde{\rho}_{\mathsf{Y}})^P(\mathsf{Y}+\xi) = [(\rho_{\mathsf{Y}}^-)^P(\mathsf{Y}+\xi), (\rho_{\mathsf{Y}}^+)^P(\mathsf{Y}+\xi)] \ge$ 

 $[min\{(\rho_{\mathsf{Y}}^{-})^{P}(\mathsf{Y}),(\rho_{\mathsf{Y}}^{-})^{P}(\xi)\},min\{(\rho_{\mathsf{Y}}^{+})^{P}(\mathsf{Y}),(\rho_{\mathsf{Y}}^{+})^{P}(\xi)\}]$ 

 $\min\left\{\left[\left(\rho_{\mathsf{Y}}^{-}\right)^{p}(\mathsf{Y}),\left(\rho_{\mathsf{Y}}^{+}\right)^{p}(\mathsf{Y})\right],\left[\left(\rho_{\mathsf{Y}}^{-}\right)^{p}(\xi),\left(\rho_{\mathsf{Y}}^{+}\right)^{p}(\xi)\right]\right\}$  $= r \min\{(\tilde{\rho}_{V})^{P}(\Psi), (\tilde{\rho}_{V})^{P}(\xi)\}.$  And  $(\tilde{\rho}_{V})^{P}(\Psi - \xi) = [(\rho_{V}^{-})^{P}(\Psi - \xi), (\rho_{V}^{+})^{P}(\Psi - \xi)]$  $\geq [\min\{(\rho_{\mathbf{Y}}^{-})^{P}(\mathbf{\Psi}), (\rho_{\mathbf{Y}}^{-})^{P}(\xi)\}, \min\{(\rho_{\mathbf{Y}}^{+})^{P}(\mathbf{\Psi}), (\rho_{\mathbf{Y}}^{+})^{P}(\xi)\}]$  $=r\min\{[(\rho_{\mathsf{Y}}^{-})^{P}(\mathsf{Y}),(\rho_{\mathsf{Y}}^{+})^{P}(\mathsf{Y})],[\left(\rho_{\mathsf{Y}}^{-})^{P}(\xi),\left(\rho_{\mathsf{Y}}^{+})^{P}(\xi)\right]\}$  $= r \min\{ (\tilde{\rho}_{\chi})^{P}(\Psi), (\tilde{\rho}_{\chi})^{P}(\xi) \}.$ Thus, we can conclude that  $V^{(N,P)}$  is a **BVFSAS-** $\bar{\mathcal{A}}$  of €.△ **Definition (3.7):** In  $\bar{\mathcal{A}}$ . A bipolar valued fuzzy subset  $\chi^{(N,P)} = \langle (\tilde{\rho}_{\chi})^N, (\tilde{\rho}_{\chi})^P \rangle \text{ of } \mathbb{H},$ for all  $\tilde{t} = [t_1, t_2] \in D[0, 1]$ , the set  $\widetilde{U}(X^{(N,P)}; \widetilde{t})$  is **a level set** of **I**€ such that  $\widetilde{U}(X^{(N,P)};\widetilde{t}) = \{ \Psi \in \mathbb{H} \mid \widetilde{\rho}_{V}(x) \geqslant \widetilde{t} \} = \widetilde{t}$  $\{ \mathbf{u} \in \mathbb{H} | [(\tilde{\rho}_{\mathbf{V}})^N \mathbf{u}, (\tilde{\rho}_{\mathbf{V}})^P (\mathbf{u})] \geq [t_1, t_2] \}$  $= \{ \mathbf{y} \in \mathbb{H} \mid (\tilde{\rho}_{\mathbf{Y}})^{N}(\mathbf{y}) \leq t_{1}, \ (\tilde{\rho}_{\mathbf{Y}})^{P}(\mathbf{y}) \geq t_{2} \} .$ **Proposition (3.8):** Assume ( $\mathbb{H}: +, -, 0$ ) be  $\bar{\mathcal{H}}$ . A bipolar valued fuzzy subset  $Y^{(N,P)} = \langle (\tilde{\rho}_{Y})^{N}, (\tilde{\rho}_{Y})^{P} \rangle$  of IE. If  $Y^{(N,P)}$  is a BVFSAS-Æ of I€. then for any  $\tilde{t} = [t_1, t_2] \in D[0, 1]$ , the set  $\widetilde{U}(X^{(N,P)};\widetilde{t})$  is a  $\bar{\mathcal{A}}$  of  $\mathcal{H}$ . Assume that  $V^{(N,P)}$  is a **BVFSAS-**  $\bar{\mathcal{A}}$  of IE and let  $\tilde{t} = [t_1, t_2] \in D[0, 1]$ such that  $\widetilde{U}(X^{(N,P)};\widetilde{t})\neq\emptyset$ , and suppose  $\Psi,\xi\in\mathbb{R}$  such  $t_1 (\tilde{\rho}_{\mathbf{Y}})^P(\mathbf{\Psi}) \geq t_2$ and  $(\tilde{\rho}_{Y})^{P}(\xi) \geq t_{2}$ . Since  $Y^{(N,P)}$  is a **BVFSAS-**  $\bar{\mathcal{A}}$  of €, we get  $1-(\tilde{\rho}_{\mathsf{Y}})^N(\mathtt{\Psi}+\xi) \leq \max\{(\tilde{\rho}_{\mathsf{Y}})^N(\mathtt{\Psi}),(\tilde{\rho}_{\mathsf{Y}})^N(\xi)\} \leq t_1,$ 

 $2 - (\tilde{\rho}_{Y})^{P} (\Psi + \xi) \ge \min\{(\tilde{\rho}_{Y})^{P} (\Psi), (\tilde{\rho}_{Y})^{P} (\xi)\} \ge t_{2},$  $3 - (\tilde{\rho}_{Y})^{N} (\Psi - \xi) \leq max\{(\tilde{\rho}_{Y})^{N}(\Psi), (\tilde{\rho}_{Y})^{N}(\xi)\} \leq t_{1}$  $4-\left(\tilde{\rho}_{\mathsf{V}}\right)^{P}\left(\mathsf{\Psi}-\xi\right)\geq\min\left\{\left(\tilde{\rho}_{\mathsf{V}}\right)^{P}\left(\mathsf{\Psi}\right),\left(\tilde{\rho}_{\mathsf{V}}\right)^{P}(\xi)\right\}\geq t_{2}.$ Therefor,  $\Psi + \xi$ ,  $\Psi - \xi \in \widetilde{U}$  (  $\chi^{(N,P)}; \widetilde{t}$  ) Hence the set  $\widetilde{U}$  ( $\chi^{(N,P)}$ ;  $\widetilde{t}$ ) is a  $\bar{\mathcal{A}}$  of  $\mathbb{H}$ .  $\triangle$ 

Proposition (3.9): In Æ. A bipolar valued fuzzy subset  $Y^{(N,P)} = \langle (\tilde{\rho}_{Y})^{N}, (\tilde{\rho}_{Y})^{P} \rangle \text{ of } \mathbb{H}.$ 

If for all  $\tilde{t} = [t_1, t_2] \in D[0, 1]$ , the set  $\widetilde{U}(Y^{(N,P)}; \widetilde{t})$  is **SAS-** $\bar{\mathcal{H}}$  of  $\mathcal{H}$ , then  $Y^{(N,P)}$  is **BVFSAS-** $\bar{\mathcal{H}}$  of  $\mathcal{H}$ . **Proof.** 

Suppose that  $\widetilde{U}(Y^{(N,P)};\widetilde{t})$  is a **SAS-**  $\overline{\mathbb{A}}$  of  $\mathbb{H}$  and  $\Psi,\xi\in\mathbb{H}$  be such that

1- 
$$(\tilde{\rho}_{\mathbf{Y}})^N (\mathbf{\Psi} + \xi) > max\{(\tilde{\rho}_{\mathbf{Y}})^N (\mathbf{\Psi}), (\tilde{\rho}_{\mathbf{Y}})^N (\xi)\},$$

Consider 
$$\alpha = 1/2 \{ (\tilde{\rho}_{\gamma})^N (\Psi + \xi) +$$

$$max\{(\tilde{\rho}_{\chi})^{N}(\mathbf{y}),(\tilde{\rho}_{\chi})^{N}(\mathbf{\xi})\}\}$$

and 
$$\beta = 1/2 \{ (\tilde{\rho}_{\chi})^N (\Psi - \xi) +$$

$$max\{(\tilde{\rho}_{\mathbf{Y}})^{N}(\mathbf{\Psi}),(\tilde{\rho}_{\mathbf{Y}})^{N}(\boldsymbol{\xi})\}\}$$

We have 
$$\alpha, \beta \in [0, 1], (\tilde{\rho}_{\chi})^N (\Psi + \xi) > \alpha > \max \{(\tilde{\rho}_{\chi})^N (\Psi), (\tilde{\rho}_{\chi})^N (\xi) \}$$

$$\text{ and } (\tilde{\rho}_{\mathbb{Y}})^N \ (\mathbb{Y} - \xi) > \alpha > \max \ \{ (\tilde{\rho}_{\mathbb{Y}})^N \ (\mathbb{Y}), (\tilde{\rho}_{\mathbb{Y}})^N \ (\xi) \}.$$

It follows that  $\Psi, \xi \in \widetilde{U}(\chi^{(N,P)}; \widetilde{t})$  and  $(\Psi + \xi) \notin \widetilde{U}(\chi^{(N,P)}; \widetilde{t})$ . This is a contradiction.

Hence, 
$$(\tilde{\rho}_{\chi})^N (\Psi + \xi) \leq \max\{(\tilde{\rho}_{\chi})^N (\Psi), (\tilde{\rho}_{\chi})^N (\xi)\} \leq$$

$$t_1$$
. Summarily,

$$2-\left(\tilde{\rho}_{\chi}\right)^{P}\left(\mathbf{\Psi}+\boldsymbol{\xi}\right) \geq \min\{\left(\tilde{\rho}_{\chi}\right)^{P}(\mathbf{\Psi}),\left(\tilde{\rho}_{\chi}\right)^{P}(\boldsymbol{\xi})\} \geq t_{2},$$

3- 
$$(\tilde{\rho}_{\chi})^N$$
  $(\Psi - \xi) \leq max\{(\tilde{\rho}_{\chi})^N(\Psi), (\tilde{\rho}_{\chi})^N(\xi)\} \leq t_1$  and

$$4 - \left(\tilde{\rho}_{\chi}\right)^{P} \left(\Psi - \xi\right) \ge \min\left\{\left(\tilde{\rho}_{\chi}\right)^{P} (\Psi), \left(\tilde{\rho}_{\chi}\right)^{P} (\xi)\right\} \ge t_{2}.$$

Therefore  $V^{(N,P)}$  is a **BVFSAS-**  $\bar{\mathcal{A}}$  of He.  $\triangle$ 

**Theorem (3.10):** Any **SAS-** $\bar{\mathcal{A}}$  of  $\bar{\mathcal{A}}$  can be realized as the upper  $[t_1,t_2]$ -Level

of some **BVFSAS**-Æ of Æ.

#### Proof.

Suppose I be a SAS-  $\bar{\mathcal{A}}$  of  $\mathcal{K}$  and  $\chi^{(N,P)} = \langle (\tilde{\rho}_{\mathcal{V}})^N, (\tilde{\rho}_{\mathcal{V}})^P \rangle$  be

bipolar valued fuzzy subset on ₭ defined by

$$\tilde{\rho}_{\mathbf{Y}}(\mathbf{Y}) = \begin{cases} [\alpha_1, \alpha_2], & \text{if } \mathbf{Y} \in I \\ [0,0], & \text{otherwise} \end{cases}$$

For all 
$$[\alpha_1, \alpha_2] \in D[0,1]$$
,

we deliberate the following cases

Case 1) If  $\Psi, \xi \in I$ , then

$$(\tilde{\rho}_{\mathbb{Y}})^{N}\left(\mathbf{\mathbf{Y}}\right)\leq\alpha_{1}\;,\left(\tilde{\rho}_{\mathbb{Y}}\right)^{N}\left(\xi\right)\leq\alpha_{1,}\left(\tilde{\rho}_{\mathbb{Y}}\right)^{P}\left(\mathbf{\mathbf{Y}}\right)\geq$$

$$\alpha_2$$
 and  $(\tilde{\rho}_{\chi})^P(\xi) \ge \alpha_2$ , thus

1- 
$$(\tilde{\rho}_{\mathcal{V}})^N (\mathbf{\Psi} + \xi) \leq \max\{(\tilde{\rho}_{\mathcal{V}})^N (\mathbf{\Psi}),$$

$$(\tilde{\rho}_{\mathcal{V}})^N(\xi)\} \le \alpha_1$$

$$2\text{-}\left(\tilde{\rho}_{\mathbf{V}}\right)^{P}\left(\mathbf{\mathbf{U}}+\boldsymbol{\xi}\right) \geq \min\{\left(\tilde{\rho}_{\mathbf{V}}\right)^{P}(\mathbf{\mathbf{U}}),\left(\tilde{\rho}_{\mathbf{V}}\right)^{P}(\boldsymbol{\xi})\} \geq \alpha_{2},$$

$$3-(\tilde{\rho}_{\chi})^{N}(\Psi-\xi) \leq \max\{(\tilde{\rho}_{\chi})^{N}(\Psi),(\tilde{\rho}_{\chi})^{N}(\xi)\} \leq \alpha_{1}$$
 and

$$4 - \left( \tilde{\rho}_{\mathring{Y}} \right)^{P} \left( \mathbf{Y} - \xi \right) \geq \min \{ \left( \tilde{\rho}_{\mathring{Y}} \right)^{P} (\mathbf{Y}), \left( \tilde{\rho}_{\mathring{Y}} \right)^{P} (\xi) \} \geq \alpha_{2}.$$

**Case 2)** If  $\Psi$  ∈ I and  $\xi \notin$  I,then

$$(\tilde{\rho}_{\chi})^{N}(\mathbf{y}) \leq \alpha_{1}, (\tilde{\rho}_{\chi})^{N}(\xi) \leq 0, (\tilde{\rho}_{\chi})^{P}(\mathbf{y}) \geq 0$$

$$\alpha_2$$
 and  $(\tilde{\rho}_{\chi})^P(\xi) \geq 0$ , thus

1- 
$$(\tilde{\rho}_{\mathsf{Y}})^N (\mathbf{\Psi} + \xi) \leq \max\{ (\tilde{\rho}_{\mathsf{Y}})^N (\mathbf{\Psi}), (\tilde{\rho}_{\mathsf{Y}})^N (\xi) \} \leq \alpha_1$$
,

$$2\text{-}(\tilde{\rho}_{\mathbb{Y}})^P\left(\mathbf{y}+\boldsymbol{\xi}\right) \geq \min\{\left(\tilde{\rho}_{\mathbb{Y}}\right)^P(\mathbf{y}), \left(\tilde{\rho}_{\mathbb{Y}}\right)^P(\boldsymbol{\xi})\} \geq 0,$$

$$3-\left(\tilde{\rho}_{\mathring{\gamma}}\right)^{N}\left(\mathbf{\Psi}-\xi\right) \leq \max\{\left(\tilde{\rho}_{\mathring{\gamma}}\right)^{N}(\mathbf{\Psi}),\left(\tilde{\rho}_{\mathring{\gamma}}\right)^{N}(\xi)\} \leq \alpha_{1}$$
 and

$$4-\left(\tilde{\rho}_{\mathsf{Y}}\right)^{P}\left(\mathtt{Y}-\xi\right) \geq \min\left\{\left(\tilde{\rho}_{\mathsf{Y}}\right)^{P}(\mathtt{Y}),\left(\tilde{\rho}_{\mathsf{Y}}\right)^{P}(\xi)\right\} \geq 0.$$

Case 3) If 
$$\Psi \notin I$$
 and  $y \in I$ , then  $(\tilde{\rho}_{Y})^{N} (\Psi) \leq 0$ ,

$$(\tilde{\rho}_{\mathsf{Y}})^N (\xi) \leq \alpha_1$$

$$(\tilde{\rho}_{\chi})^{P}(\Psi) \geq 0 \ and \ (\tilde{\rho}_{\chi})^{P}(\xi) \geq \alpha_{2}$$
, thus

$$1- \quad (\tilde{\rho}_{\mathbb{Y}})^N \left( \mathbf{y} + \xi \right) \\ \leq \max \{ \, (\tilde{\rho}_{\mathbb{Y}})^N (\mathbf{y}), (\tilde{\rho}_{\mathbb{Y}})^N (\xi) \}$$

$$\leq \alpha_1$$

$$2 - (\tilde{\rho}_{\mathbf{Y}})^{P} (\mathbf{y} + \xi) \ge \min\{ (\tilde{\rho}_{\mathbf{Y}})^{P} (\mathbf{y}), (\tilde{\rho}_{\mathbf{Y}})^{P} (\xi) \} \ge 0,$$

3- 
$$(\tilde{\rho}_{\chi})^N (\Psi - \xi) \le \max\{(\tilde{\rho}_{\chi})^N (\Psi), (\tilde{\rho}_{\chi})^N (\xi)\} \le \alpha_1$$
 and

$$4 - \left(\tilde{\rho}_{\mathbb{Y}}\right)^{P} \left(\mathbf{y} - \xi\right) \geq \min\{\left(\tilde{\rho}_{\mathbb{Y}}\right)^{P} \left(\mathbf{y}\right), \left(\tilde{\rho}_{\mathbb{Y}}\right)^{P} (\xi)\} \geq 0.$$

Case 4) If 
$$\mathbf{q} \notin \mathbf{I}, \xi \notin \mathbf{I}$$
 and y,then  $(\tilde{\rho}_{\mathbf{Y}})^N(\mathbf{q}) \leq 0$ ,

$$(\tilde{\rho}_{\chi})^N (\xi) \leq 0$$
 and

$$(\tilde{\rho}_{\chi})^{P}(\Psi) \geq 0 \text{ and } (\tilde{\rho}_{\chi})^{P}(\xi) \geq 0, \text{ thus}$$

$$1- (\tilde{\rho}_{\mathbf{Y}})^{N} (\mathbf{\Psi} + \xi) \leq \max\{ (\tilde{\rho}_{\mathbf{Y}})^{N} (\mathbf{\Psi}),$$

$$(\tilde{\rho}_{\mathcal{V}})^N(\xi)\} \le 0 ,$$

$$_{2^{-}}(\tilde{\rho}_{\chi})^{p}(\Psi+y) \geq min\{(\tilde{\rho}_{\chi})^{p}(\Psi),$$

$$(\tilde{\rho}_{\mathcal{Y}})^{P}(y)\} \geq 0,$$

3- 
$$(\tilde{\rho}_{\mathbb{Y}})^N (\mathbf{\Psi} - \xi) \leq \max\{(\tilde{\rho}_{\mathbb{Y}})^N (\mathbf{\Psi}), (\tilde{\rho}_{\mathbb{Y}})^N (\xi)\} \leq 0$$
 and

$$4-\left(\tilde{\rho}_{\mathsf{Y}}\right)^{P}\left(\mathtt{\Psi}-\xi\right) \geq \min\left\{\left(\tilde{\rho}_{\mathsf{Y}}\right)^{P}(\mathtt{\Psi}),\left(\tilde{\rho}_{\mathsf{Y}}\right)^{P}(\xi)\right\} \geq 0.$$

Therefore,  $V^{(N,P)}$  is a **BVFSAS-** $\bar{\mathcal{A}}$  of IC. $\triangle$ 

**Corollary (3.11):** In  $\bar{\mathcal{A}}$ ,  $\mathbb{Q}$  be a subset of  $\mathbb{H}$  and let  $\mathbb{Y}^{(N,P)} = \langle (\tilde{\rho}_{\mathbb{Y}})^N, (\tilde{\rho}_{\mathbb{Y}})^P \rangle$  be an bipolar valued fuzzy

subset on IE defined by:

$$\tilde{\rho}_{\mathbb{Y}}(\mathbf{y}) = \begin{cases} [\alpha_1, \alpha_2] & if \quad \mathbf{y} \in \mathbb{Q} \\ [0,0] & ot \Box \textit{erwise} \end{cases}$$

Where  $\alpha_1, \alpha_2 \in (0, 1]$  with  $\alpha_1 < \alpha_2$ . If  $\chi^{(N,P)}$  is a

# **BVFSAS-**Æ of I€,

then Q is a SA-subalgebra of IC.

## **Proof:**

Since that  $V^{(N,P)}$  is a **BVFSAS-** $\bar{\mathcal{A}}$  of IC. Let  $\Psi$ ,  $\xi \in \mathbb{Q}$ , then by Definition(3.1)

1- 
$$(\tilde{\rho}_{\chi})^N (\Psi + \xi) \leq \max\{(\tilde{\rho}_{\chi})^N (\Psi), (\tilde{\rho}_{\chi})^N (\xi)\} \leq \alpha_1$$
,

$$2\text{-}\left(\tilde{\rho}_{\mathbb{Y}}\right)^{P}\left(\mathbf{\Psi}+\boldsymbol{\xi}\right) \geq \min\{\left(\tilde{\rho}_{\mathbb{Y}}\right)^{P}(\mathbf{\Psi}),\left(\tilde{\rho}_{\mathbb{Y}}\right)^{P}(\boldsymbol{\xi})\} \geq \alpha_{2},$$

3- 
$$(\tilde{\rho}_{\chi})^N (\mathbf{q} - \xi) \le max\{(\tilde{\rho}_{\chi})^N(\mathbf{q}), (\tilde{\rho}_{\chi})^N(\xi)\} \le \alpha_1$$
 and

4- 
$$(\tilde{\rho}_{\chi})^{P}(\Psi - \xi) \ge min\{(\tilde{\rho}_{\chi})^{P}(\Psi), (\tilde{\rho}_{\chi})^{P}(\xi)\} \ge \alpha_{2}$$
.  
This implies that  $\Psi + \xi, \Psi - \xi \in \mathbb{Q}$ . Hence  $\mathbb{Q}$  is a **SAS**- $\bar{\mathbb{E}}$  of  $\mathbb{H}$ .  $\triangle$ 

**Proposition (3.12):** Assume  $\mathfrak{A}$ : ( $\mathbb{H}$ ; +, -,0)  $\rightarrow$  ( $\mathbb{Q}$ ; +', -',0') be homomorphism of SA-algebras. If B is a **BVFSAS-**  $\bar{\mathbb{H}}$  of  $\mathbb{Q}$ ,

then the inverse image  $\mathfrak{A}^{-1}(B)$  of B is a **BVFSAS-**  $\bar{\mathcal{A}}$  of IC.

#### **Proof:**

Since 
$$B^{(N,P)} = \langle (\tilde{\rho}_B)^N, (\tilde{\rho}_B)^P \rangle$$
 is a **BVFSAS**- $\bar{\mathcal{A}}$  of  $\mathbb{Q}$ .

it follows from Theorem (3.6), that  $(\rho_B^-)^N$  and  $(\rho_B^+)^N$  are **AFSAS-** $\bar{\mathcal{A}}$  of  $\mathbb{Q}$  and  $(\rho_B^-)^P$  and  $(\rho_B^+)^P$  are **FSAS-** $\bar{\mathcal{A}}$  of  $\Omega$ .

Using Theorem (2.19) and Theorem (2.27), we discern  $\mathfrak{A}^{-1}((\rho_B^-)^N)$  and  $\mathfrak{A}^{-1}((\rho_B^+)^N)$  are **AFSAS-**  $\bar{\mathcal{A}}$  of IC and  $\mathfrak{A}^{-1}((\rho_B^-)^P)$  and  $\mathfrak{A}^{-1}((\rho_B^+)^P)$  are **FSAS-**  $\bar{\mathcal{A}}$  of IC. Hence  $\mathfrak{A}^{-1}(B) = [\mathfrak{A}^{-1}((\tilde{\rho}_B)^N), \mathfrak{A}^{-1}((\tilde{\rho}_B)^P)]$  is a **BVFSAS-**  $\bar{\mathcal{A}}$  of IC.  $\triangle$ 

**Definition (3.13):** Assume  $\mathfrak{A}: (\mathbb{H}; +, -, 0) \rightarrow (\mathfrak{Q}; +', -', 0')$  be a mapping from a set  $\mathbb{H}$  into a set  $\mathfrak{Q}$ .  $\mathbb{Y}^{(N,P)} = \langle (\tilde{\rho}_{\mathbb{Y}})^N, (\tilde{\rho}_{\mathbb{Y}})^P \rangle$  is a bipolar valued subset of  $\mathbb{H}$  has sup and inf

properties if for any subset T of IE,

**properties** if for any subset 1 of  $\mathbb{R}$ , there exist the  $\mathcal{L}$  Through that  $\tilde{\mathcal{L}}$  (t) = 1

there exist t, s  $\in$  T such that  $\tilde{\rho}_{\gamma}(t) = \underset{t \in T}{rsup} \tilde{\rho}_{\gamma}(t_0)$  and

$$\tilde{\rho}_{\chi}(t) = \inf_{t \in T} \, \tilde{\rho}_{\chi}(t_0)$$

**Proposition** (3.14): Let  $\mathfrak{A}$ : (H; +, -,0)  $\rightarrow$  ( $\mathfrak{Q}$ ; +', -', 0') be an epimorphism of SA-algebras.

If  $Y^{(N,P)} = \langle (\tilde{\rho}_{Y})^{N}, (\tilde{\rho}_{Y})^{P} \rangle$  is a **BVFSAS-**  $\bar{\mathcal{A}}$  of IC with inf-sup property, then  $\mathfrak{U}(Y)$  is a **BVFSAS-**  $\bar{\mathcal{A}}$  of  $\mathbb{Q}$ . **Proof:** 

Assume that  $\chi^{(N,P)} = \langle (\tilde{\rho}_{\chi})^N, (\tilde{\rho}_{\chi})^P \rangle$  is a **BVFSAS**-Æ of IC.

It follows from Theorem (3.6), that  $(\rho_{\chi}^-)^N$  and  $(\rho_{\chi}^+)^N$  are **AFSAS-** $\bar{\mathcal{A}}$ 

of  $\mathbb{H}$  and  $(\rho_{\mathbb{Y}}^{-})^{P}$  and  $(\rho_{\mathbb{Y}}^{+})^{P}$  are **FSAS-**  $\bar{\mathbb{H}}$  of  $\mathbb{H}$ . of  $\mathbb{H}$ . Using (2.21), Theorem (2.29), the images  $\mathfrak{U}((\rho_{B}^{-})^{N})$ 

and 
$$\mathfrak{U}((\rho_B^+)^N)$$
 are **AFSAS-**  $\bar{\mathbb{A}}$  of  $\mathbb{Q}$  and  $\mathfrak{U}((\rho_B^-)^P)$  and  $\mathfrak{U}((\rho_B^+)^P)$  are **BVFSAS-**  $\bar{\mathbb{A}}$  of  $\mathbb{Q}$ . Hence  $\mathfrak{U}(\mathbb{Y}^{(N,P)}) = \langle \mathfrak{U}((\tilde{\rho}_{\mathbb{Y}})^N), \mathfrak{U}((\tilde{\rho}_{\mathbb{Y}})^P) \rangle$  is a **BVFSAS-**  $\bar{\mathbb{A}}$  of  $\mathbb{Q}$ . $\triangle$ 

# 4. BIPOLAR VALUED FUZZY SA-IDEALS OF SA-ALGEBRA

In the part, the conception of the bipolar valued fuzzy SA-ideals of SA-algebra is introduced. Some theorems and properties are detailed and evidenced.

**Definition (4.1):** A interval valued fuzzy subset  $\mathcal{Y} = \{ < \mathbf{V}, \, \tilde{\rho}_{\mathcal{Y}} \, (\mathbf{V}) > | \, \mathbf{V} \in \mathbf{E} \}$   $= \{ < \mathbf{V}, \, [\rho_{\mathcal{Y}}^{-} \, (\mathbf{V}), \, \rho_{\mathcal{Y}}^{+} \, (\mathbf{V}) \, ] > | \, \mathbf{V} \in \mathbf{E} \} \text{ of SA-algebra}$   $(\mathbf{E}; +, -, 0)$ 

is named a bipolar valued fuzzy SA-ideal (BVFSAI- $\bar{\mathbb{A}}$ ) of  $\mathbb{H}$  signified by

$$\begin{split} & \mathbf{Y}^{(N,P)} = \{ < \mathbf{\Psi}, \, (\tilde{\rho}_{\mathbf{Y}})^N \, (\mathbf{\Psi}), \, (\tilde{\rho}_{\mathbf{Y}})^P \, (\mathbf{\Psi}) > | \, \mathbf{\Psi} \in \mathbf{H} \} \\ & = \{ < \mathbf{\Psi}, \, \widetilde{\left(\rho_{\mathbf{Y}}^N\right)} \, (\mathbf{\Psi}), \, \widetilde{\left(\rho_{\mathbf{Y}}^P\right)} \, (\mathbf{\Psi}) > | \, \mathbf{\Psi} \in \mathbf{H} \, \} \, , \, \mathbf{Y}^{(N,P)} \\ & = < \, (\tilde{\rho}_{\mathbf{Y}})^N, (\tilde{\rho}_{\mathbf{Y}})^P \, > , \, \text{if for all } \, \mathbf{\Psi}, \, \xi, \, \varsigma \in \mathbf{H}. \\ & 1 - (\tilde{\rho}_{\mathbf{Y}})^N \, (0) \, \leq \, (\tilde{\rho}_{\mathbf{Y}})^N (\mathbf{\Psi}), \quad (\tilde{\rho}_{\mathbf{Y}})^P \, (0) \, \geq \, (\tilde{\rho}_{\mathbf{Y}})^P (\mathbf{\Psi}). \\ & 2 - (\tilde{\rho}_{\mathbf{Y}})^N \, (\mathbf{\Psi} + \xi) \, \leq \max \{ \, (\tilde{\rho}_{\mathbf{Y}})^N (\mathbf{\Psi} + \varsigma), (\tilde{\rho}_{\mathbf{Y}})^N (\xi - \varsigma) \, \text{and} \end{split}$$

3- 
$$(\tilde{\rho}_{\chi})^{P}(\Psi + \xi) \ge \min\{(\tilde{\rho}_{\chi})^{P}(\Psi + \zeta), (\tilde{\rho}_{\chi})^{P}(\xi - \zeta)\}.$$
 i.e.,

1- 
$$(\widetilde{\rho_{\mathbb{Y}}^{N}})$$
 (0)  $\leq (\widetilde{\rho_{\mathbb{Y}}^{N}})$  (4) and  $(\widetilde{\rho_{\mathbb{Y}}^{P}})$  (0)  $\geq (\widetilde{\rho_{\mathbb{Y}}^{P}})$  (4),  
2-  $(\widetilde{\rho_{\mathbb{Y}}^{N}})$  (4 +  $\xi$ )  $\leq rmax\{(\widetilde{\rho_{\mathbb{Y}}^{N}})$  (4 +  $\zeta$ ),  $(\widetilde{\rho_{\mathbb{Y}}^{N}})$  ( $\xi - \zeta$ )},

3- 
$$(\widetilde{\rho_{\chi}^{P}})$$
  $(\Psi + \xi) \geq rmin\{(\widetilde{\rho_{\chi}^{P}})(\Psi + \zeta), (\widetilde{\rho_{\chi}^{P}})(\xi - \zeta)\}.$  i.e.,

$$1-(\rho_{\mathbb{Y}}^{-})^{N}(0) \leq (\rho_{\mathbb{Y}}^{-})^{N}(\mathbb{Y}) \text{ and } \qquad (\rho_{\mathbb{Y}}^{-})^{P}(0) \geq (\rho_{\mathbb{Y}}^{-})^{P}(\mathbb{Y}),$$

$$2-(\rho_{\overline{Y}}^-)^N(\Psi+\xi) \le \max\{(\rho_{\overline{Y}}^-)^N(\Psi+\zeta), (\rho_{\overline{Y}}^-)^N(\xi-\zeta)\} \text{ and }$$

$$_{3-}\left(\rho_{\mathbb{Y}}^{-}\right)^{P}\left(\mathbb{Y}+\xi\right) \geq \min\{\left(\rho_{\mathbb{Y}}^{-}\right)^{P}(\mathbb{Y}+\varsigma),\left(\rho_{\mathbb{Y}}^{-}\right)^{P}(\xi-\varsigma)\}.$$

**Example (4.2):** Let  $\mathbb{E} = \{0, 1, 2, 3\}$  in which the operations (+, -) be define by the following tables:

| , |   |   |   |   |  |
|---|---|---|---|---|--|
| + | 0 | 1 | 2 | 3 |  |
| 0 | 0 | 1 | 2 | 3 |  |
| 1 | 1 | 2 | 3 | 0 |  |
| 2 | 2 | 3 | 0 | 1 |  |
| 3 | 3 | 0 | 1 | 2 |  |

| _ | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 3 | 2 | 1 |
| 1 | 1 | 0 | 3 | 2 |
| 2 | 2 | 1 | 0 | 3 |
| 3 | 3 | 2 | 1 | 0 |

Then (IE; +, -, 0) is  $\bar{\mathbb{A}}$ . Define  $\mathbf{Y}^{(N,P)} = \mathbf{0}$  $(\tilde{\rho}_{\rm V})^N, (\tilde{\rho}_{\rm V})^P >$ 

of  $\mathbb{H}$  where  $I = \{0,1\}$  is a SA-ideal of  $\mathbb{H}$ , such that: The fuzzy subsets  $\rho^+$ :  $\mathbb{H} \to [0,1]$  and  $\rho^-$ :  $\mathbb{H} \to [0,1]$ [-1,0] by:

$$\chi^{(N,P)} \left( \mathbf{Y} \right) = \begin{cases} \left[ \left[ -0.4, -0.3 \right], \left[ 0.3, 0.7 \right] \right] & \textit{if} \, \mathbf{Y} = \{0,1\} \\ \left[ \left[ -0.3, -0.2 \right], \left[ 0.2, 0.5 \right] \right] & \textit{otherwise} \end{cases}$$

Then  $V^{(N,P)}$  (4) is is a **BVFSAI-**  $\bar{\mathcal{A}}$  of IC.

**Theorem (4.3):** A bipolar valued fuzzy subset  $V^{(N,P)} = \langle (\tilde{\rho}_{V})^{N}, (\tilde{\rho}_{V})^{P} \rangle$ of  $\bar{\mathcal{E}}$  is a **BVFSAI-**  $\bar{\mathcal{E}}$  of  $\mathbf{IC}$  if and only if,  $(\rho_{\rm Y}^-)^N$  and  $(\rho_{\rm Y}^+)^N$  are **AFSAI-**  $\bar{\mathbb{A}}$  of IC and  $(\rho_{\rm Y}^-)^P$ and  $(\rho_{\mathsf{Y}}^+)^P$  are **FSAI-**  $\bar{\mathcal{A}}$  of IC.

#### **Proof:**

Suppose that  $\chi^{(N,P)}$  is a **BVFSAI-** $\bar{\mathcal{A}}$  of IC, then for all  $\Psi \in \mathbb{H}$ ,

for all 
$$\Psi \in \mathbb{H}$$
, 
$$[(\tilde{\rho}_{\mathbb{Y}})^{N}(0), (\tilde{\rho}_{\mathbb{Y}})^{P}(0)] \geq [(\tilde{\rho}_{\mathbb{Y}})^{N}(\Psi), (\tilde{\rho}_{\mathbb{Y}})^{P}(\Psi)], \text{ then }$$

$$(\rho_{\mathbb{Y}}^{-})^{N}(0) \leq (\rho_{\mathbb{Y}}^{-})^{N}(\Psi) \text{ and } (\rho_{\mathbb{Y}}^{-})^{P}(0) \geq$$

$$(\rho_{\mathbb{Y}}^{-})^{P}(\Psi). \text{ For all } \Psi \in \mathbb{H}, \text{ we have }$$

$$[(\rho_{\mathbb{Y}}^{-})^{N}(\Psi + \xi), (\rho_{\mathbb{Y}}^{+})^{N}(\Psi + \xi)] = (\tilde{\rho}_{\mathbb{Y}})^{N}(\Psi + \xi)$$

$$\leq r \max \left\{ (\tilde{\rho}_{\mathbb{Y}})^{N}(\Psi + \xi), (\tilde{\rho}_{\mathbb{Y}})^{N}(\xi - \zeta) \right\}$$

$$= r \max \left\{ [(\rho_{\mathbb{Y}}^{-})^{N}(\Psi + \xi), (\rho_{\mathbb{Y}}^{+})^{N}(\Psi + \xi)], [(\rho_{\mathbb{Y}}^{-})^{N}(\xi - \zeta), (\rho_{\mathbb{Y}}^{+})^{N}(\Psi + \zeta)], [(\rho_{\mathbb{Y}}^{-})^{N}(\xi - \zeta)] \right\}$$

$$= [\max \{ (\rho_{\mathbb{Y}}^{-})^{N}(\Psi + \xi), (\rho_{\mathbb{Y}}^{+})^{N}(\Psi + \xi)\},$$

$$\max \{ (\rho_{\mathbb{Y}}^{-})^{N}(\xi - \zeta), (\rho_{\mathbb{Y}}^{+})^{N}(\xi - \zeta)\} ]$$

$$\max\{(\rho_{\mathsf{Y}}^{-})^{N}(\xi-\varsigma),(\rho_{\mathsf{Y}}^{+})^{N}(\xi-\varsigma)\}]$$

$$= [\max\{(\rho_{\mathbf{Y}}^-)^N(\mathbf{\Psi} + \varsigma), (\rho_{\mathbf{Y}}^-)^N(\xi - \varsigma)\},$$

$$\max\{\,(\rho_{\mathbb{Y}}^{+})^{N}(\mathbf{y}+\varsigma),(\rho_{\mathbb{Y}}^{+})^{N}(\xi-\varsigma)\}]$$

Therefore , 
$$(\rho_{\mathbb{Y}}^-)^N(\mathbf{Y}+\xi) \leq \max\{\,(\rho_{\mathbb{Y}}^-)^N(\mathbf{Y}+$$

$$\varsigma$$
),  $(\rho_{\rm Y}^-)^N (\xi - \varsigma)$ } and

$$(\rho_{\mathbb{Y}}^+)^N(\mathbb{Y}+\xi) \leq \max\{\,(\rho_{\mathbb{Y}}^+)^N(\mathbb{Y}+\varsigma),(\rho_{\mathbb{Y}}^+)^N(\xi-\varsigma)\}\ .$$
 Also,

$$\begin{split} &[(\rho_{\mathbb{Y}}^{-})^{P}(\mathbb{Y}+\xi),(\rho_{\mathbb{Y}}^{+})^{P}(\mathbb{Y}+\xi)] = (\tilde{\rho}_{\mathbb{Y}})^{P}(\mathbb{Y}+\xi) \geqslant \\ &r\min\{(\tilde{\rho}_{\mathbb{Y}})^{P}(\mathbb{Y}+\zeta),(\tilde{\rho}_{\mathbb{Y}})^{P}(\xi-\zeta)\} \end{split}$$

$$=r\min\{[(\rho_{\breve{\chi}}^-)^P(\mathbf{y}+\varsigma),(\rho_{\breve{\chi}}^+)^P(\mathbf{y}+\varsigma)],[(\rho_{\breve{\chi}}^-)^P(\xi-\varsigma),(\rho_{\breve{\chi}}^+)^P(\xi-\varsigma)]\}$$

$$= [\min\{(\rho_{\mathbf{Y}}^{-})^{P}(\mathbf{\Psi} + \varsigma), (\rho_{\mathbf{Y}}^{+})^{P}(\mathbf{\Psi} + \varsigma)\}, \min\{(\rho_{\mathbf{Y}}^{-})^{P}(\xi - \varsigma), (\rho_{\mathbf{Y}}^{+})^{P}(\xi - \varsigma)\}]$$

= 
$$[min\{(\rho_{\bar{Y}}^-)^P(\Psi + \zeta), (\rho_{\bar{Y}}^-)^P(\xi - \zeta)\}, min\{(\rho_{\bar{Y}}^+)^P(\Psi + \zeta), (\rho_{\bar{Y}}^+)^P(\xi - \zeta)\}]$$

Therefore, 
$$(\rho_{\overline{\chi}}^-)^P(\Psi + \xi) \ge min\{(\rho_{\overline{\chi}}^-)^P(\Psi + \zeta), (\rho_{\overline{\chi}}^-)^P(\xi - \zeta)\}$$
 and

$$(\rho_{\mathsf{Y}}^{+})^{P}(\mathsf{Y} + \xi) \ge min\{(\rho_{\mathsf{Y}}^{+})^{P}(\mathsf{Y} + \varsigma), (\rho_{\mathsf{Y}}^{+})^{P}(\xi - \varsigma)\}.$$

Hence, we become that  $(\rho_{\rm Y}^-)^N$  and  $(\rho_{\rm Y}^+)^N$  are **AFSAI**-

 $\bar{\mathcal{E}}$  of  $\mathbb{H}$  and  $(\rho_{\mathbb{Y}}^{-})^{P}$  and  $(\rho_{\mathbb{Y}}^{+})^{P}$  are **FSAI**- $\bar{\mathcal{E}}$  of  $\mathbb{H}$ .

Conversely, if  $(\rho_{\mathsf{Y}}^-)^N$  and  $(\rho_{\mathsf{Y}}^+)^N$  are **AFSAI**-  $\bar{\mathcal{E}}$  of IC and  $(\rho_{\rm V}^-)^P$  and  $(\rho_{\rm V}^+)^P$  are **FSAI**-  $\bar{\mathcal{A}}$  of IC,

for all  $\Psi, \xi, \zeta \in \mathbb{H}$ . Observe :

$$\begin{split} (\tilde{\rho}_{\mathring{Y}})^{N}(\mathbf{y} + \xi) &= [(\rho_{\mathring{Y}}^{-})^{N}(\mathbf{y} + \xi), (\rho_{\mathring{Y}}^{+})^{N}(\mathbf{y} + \xi)] \\ &\leq [\max\{(\rho_{\mathring{Y}}^{-})^{N}(\mathbf{y} + \zeta), (\rho_{\mathring{Y}}^{-})^{N}(\xi - \zeta)\}, \\ \min\{(\rho_{\mathring{Y}}^{+})^{N}(\mathbf{y} + \zeta), (\rho_{\mathring{Y}}^{+})^{N}(\xi - \zeta)\}] \end{split}$$

$$= r \max\{ [(\rho_{V}^{-})^{N}(\Psi + \zeta), (\rho_{V}^{+})^{N}(\Psi + \zeta) \}$$

$$\varsigma)],[(\rho_{\mathbb{Y}}^{-})^{N}(\xi-\varsigma),(\rho_{\mathbb{Y}}^{+})^{N}(\xi-\varsigma)]\}$$

= 
$$r \max\{(\tilde{\rho}_{\chi})^{N}(\Psi + \varsigma), (\tilde{\rho}_{\chi})^{N}(\xi - \varsigma)\}$$
. Also

$$(\tilde{\rho}_{\mathbb{Y}})^P(\mathbb{Y}+\xi) = [(\rho_{\mathbb{Y}}^-)^P(\mathbb{Y}+\xi), (\rho_{\mathbb{Y}}^+)^P(\mathbb{Y}+\xi)]$$

$$\geq [\min\{(\rho_{\mathbb{Y}}^{-})^{P}(\mathbb{Y}+\varsigma), (\rho_{\mathbb{Y}}^{-})^{P}(\xi-\varsigma)\}, \min\{(\rho_{\mathbb{Y}}^{+})^{P}(\mathbb{Y}+\varsigma), (\rho_{\mathbb{Y}}^{+})^{P}(\xi-\varsigma)\}]$$

$$= r \min\{ [(\rho_{\bar{\chi}}^{-})^{P}(\Psi + \zeta), (\rho_{\bar{\chi}}^{+})^{P}(\Psi + \zeta)], [(\rho_{\bar{\chi}}^{-})^{P}(\xi - \zeta), (\rho_{\bar{\chi}}^{+})^{P}(\xi - \zeta)] \}$$

=  $r min\{(\tilde{\rho}_{\chi})^{P}(\Psi + \zeta), (\tilde{\rho}_{\chi})^{P}(\xi - \zeta)\}$ . Thus, we can settle that  $V^{(N,P)}$  is a **BVFSAI-**  $\bar{\mathbb{A}}$  of IC. $\triangle$ 

**Proposition (4.4):** In  $\bar{\mathcal{A}}$ . A bipolar valued fuzzy subset  $Y^{(N,P)} = \langle (\tilde{\rho}_{Y})^{N}, (\tilde{\rho}_{Y})^{P} \rangle$  of He. If  $Y^{(N,P)}$  is a

# **BVFSAI-** Æ

of IC, then for any  $\tilde{t} = [t_1, t_2] \in D[0, 1]$ , the set  $\widetilde{U}$  (  $X^{(N,P)}$ ;  $\widetilde{t}$  ) is a **SAI-**  $\overline{\mathbb{A}}$  of  $\mathbb{H}$  .

## Proof.

Assume that  $V^{(N,P)}$  is a **BVFSAI-**  $\bar{\mathbb{A}}$  of **I** $\in$  and let  $\tilde{t} = [t_1, t_2] \in D[0, 1]$  be such that  $\tilde{U}(Y^{(N,P)}; \tilde{t}) \neq \emptyset$ , and assume  $\Psi, \xi, \zeta \in \mathbb{H}$  such that

$$\begin{split} & \forall + \varsigma, \xi - \varsigma \in \widetilde{U} \left( \mathsf{Y}^{(N,P)}; \widetilde{t} \right), \text{ then } (\widetilde{\rho}_{\mathsf{Y}})^{N} ( \forall + \varsigma ) \leq t_{1}, \\ & (\widetilde{\rho}_{\mathsf{Y}})^{N} (\xi - \varsigma) \leq t_{1}, \\ & (\widetilde{\rho}_{\mathsf{Y}})^{P} ( \forall + \varsigma ) \geq t_{2} \text{ and } (\widetilde{\rho}_{\mathsf{Y}})^{P} (\xi - z) \geq t_{2}. \\ & \text{Since } \mathsf{Y}^{(N,P)} \text{ is a } \mathbf{BVFSAI-} \, \bar{\mathcal{A}} \text{ of } \mathsf{IC}, \text{ we get} \\ & 1- (\widetilde{\rho}_{\mathsf{Y}})^{N} \left( 0 \right) \leq (\widetilde{\rho}_{\mathsf{Y}})^{N} ( \forall ) \leq t_{1} \text{ and } \left( \widetilde{\rho}_{\mathsf{Y}} \right)^{P} \left( 0 \right) \geq \\ & (\widetilde{\rho}_{\mathsf{Y}})^{P} ( \forall ) \geq t_{2}, \text{ implies that } : \\ & 0 \in \widetilde{U} \left( \mathsf{Y}^{(N,P)}; \widetilde{t} \right), \\ & 2- (\widetilde{\rho}_{\mathsf{Y}})^{N} \left( \forall + \xi \right) \leq \max \{ (\widetilde{\rho}_{\mathsf{Y}})^{N} ( \forall + \varsigma ), (\widetilde{\rho}_{\mathsf{Y}})^{N} ( \xi - \varsigma ) \} \leq t_{1}, \\ & 3- (\widetilde{\rho}_{\mathsf{Y}})^{P} \left( \forall + \xi \right) \geq \min \{ (\widetilde{\rho}_{\mathsf{Y}})^{P} ( \forall + \varsigma ), (\widetilde{\rho}_{\mathsf{Y}})^{P} ( \xi - \varsigma ) \} \geq t_{2}, \end{split}$$

Therefore,  $\Psi + \xi \in \widetilde{U}(Y^{(N,P)}; \widetilde{t})$ , Hence the set  $\widetilde{U}(Y^{(N,P)}; \widetilde{t})$  is a **SAI-**  $\overline{\mathbb{A}}$  of  $\mathbb{H}$ .  $\triangle$ 

**Proposition (4.5):** In  $\bar{\mathbb{A}}$ . A bipolar valued fuzzy subset  $\chi^{(N,P)} = \langle (\tilde{\rho}_{\chi})^N, (\tilde{\rho}_{\chi})^P \rangle$  of  $\mathbb{H}$ . If for all  $\tilde{t} = [t_1, t_2] \in D[0, 1]$ ,

the set  $\widetilde{U}(Y^{(N,P)}; \widetilde{t})$  is an SAI- $\overline{\mathbb{A}}$  of  $\mathbb{H}$ , then  $Y^{(N,P)}$  is a **BVFSAI-** $\overline{\mathbb{A}}$  of  $\mathbb{H}$ .

#### roof.

Assume that  $\widetilde{U}$  (  $\mathbb{Y}^{(N,P)}$ ;  $\widetilde{t}$  ) is a **SAI-**  $\overline{\mathbb{A}}$  of I $\mathbb{C}$  , for any  $\mathbb{Y} \in \mathbb{H}$ ,  $(\widetilde{\rho}_{\mathbb{Y}})^N$  (0)  $\leq (\widetilde{\rho}_{\mathbb{Y}})^N$  ( $\mathbb{Y}$ )  $\leq t_1$  and  $(\widetilde{\rho}_{\mathbb{Y}})^P$  (0)  $\geq (\widetilde{\rho}_{\mathbb{Y}})^P$  ( $\mathbb{Y}$ ),  $\geq t_2$ . And assume  $\mathbb{Y}$ ,  $\xi$ ,  $\zeta \in \mathbb{H}$  be such that  $(\widetilde{\rho}_{\mathbb{Y}})^N$  ( $\mathbb{Y}$  +  $\xi$ )  $> \max\{(\widetilde{\rho}_{\mathbb{Y}})^N(\mathbb{Y} + \zeta), (\widetilde{\rho}_{\mathbb{Y}})^N(\xi - \zeta)\}$ ,

Consider:

$$\alpha = 1 / 2 \{ (\tilde{\rho}_{\gamma})^{N} (\Psi + \xi) + \max\{(\tilde{\rho}_{\gamma})^{N} (\Psi + \xi), (\tilde{\rho}_{\gamma})^{N} (\xi - \zeta) \} \}$$
 and 
$$\beta = 1 / 2 \{ (\tilde{\rho}_{\gamma})^{P} (\Psi + \xi) + \min\{(\tilde{\rho}_{\gamma})^{P} (\Psi + \zeta), (\tilde{\rho}_{\gamma})^{P} (\xi - \zeta) \} \}$$

We have  $\alpha, \beta \in [0, 1]$ ,  $(\tilde{\rho}_{\S})^N (\P + \xi) > \alpha > \max \{(\tilde{\rho}_{\S})^N (\P + \zeta), (\tilde{\rho}_{\S})^N (\xi - \zeta)\}$  and  $(\tilde{\rho}_{\S})^P (\P + \xi) < \beta < \beta$ 

 $\min\{(\tilde{\rho}_{\chi})^{P} (\Psi + \zeta), (\tilde{\rho}_{\chi})^{P} (\xi - \zeta)\}.$ 

It follows that  $\Psi + \zeta$ ,  $\xi - \zeta \in \widetilde{U}(Y^{(N,P)}; \widetilde{t})$ 

and  $(\Psi + \xi) \notin \widetilde{U}(Y^{(N,P)}; \widetilde{t})$ . This is a contradiction.

Therefore  $V^{(N,P)}$  is a **BVFSAI-**  $\bar{\mathcal{A}}$  of **I** $\epsilon$ .  $\triangle$ 

**Theorem (4.6):** Any **SAI-**  $\bar{\mathcal{A}}$  of  $\bar{\mathcal{A}}$  can be realized as the upper  $[t_1,t_2]$ -Level of some **BVFSAI-**  $\bar{\mathcal{A}}$  of  $\mathcal{A}$ .

Proof.

Assume I be a **SAI**-  $\bar{\mathcal{A}}$  of  $\mathbb{R}$  and  $\mathbf{Y}^{(N,P)} =$ 

$$<(\tilde{\rho}_{\rm Y})^N,(\tilde{\rho}_{\rm Y})^P>$$

be bipolar valued fuzzy subset on Æ defined by

$$\tilde{\rho}_{\mathbb{Y}}(\mathbb{Y}) \!\!=\!\! \begin{cases} [\alpha_1,\alpha_2], & \text{if } \mathbb{Y} \in I \\ [0,0], & \text{otherwise} \end{cases}$$

For all  $[\alpha_1, \alpha_2] \in D[0,1]$ , we contemplate the following cases:

Case 1) If 
$$\Psi + \zeta, \xi - \zeta \in I$$
, then  $(\tilde{\rho}_{\chi})^N (\Psi) \leq \alpha_1, (\tilde{\rho}_{\chi})^N (\xi) \leq \alpha_1,$ 

$$(\tilde{\rho}_{\chi})^{P}(\Psi) \ge \alpha_{2} \text{ and } (\tilde{\rho}_{\chi})^{P}(\xi) \ge \alpha_{2},$$

$$(\tilde{\rho}_{\chi})^{N} (\Psi + \varsigma) \leq \alpha_{1}, (\tilde{\rho}_{\chi})^{N} (\xi - \varsigma) \leq \alpha_{1}, \text{ and }$$
  
 $(\tilde{\rho}_{\chi})^{P} (\Psi + \varsigma) \geq \alpha_{2} \text{ and } (\tilde{\rho}_{\chi})^{P} (\xi - \varsigma) \geq \alpha_{2}, \text{ thus}$ 

1- 
$$(\tilde{\rho}_{\chi})^{N}(0) \leq (\tilde{\rho}_{\chi})^{N}(\Psi) \leq \alpha_{1} \text{ and } (\tilde{\rho}_{\chi})^{P}(0) \geq (\tilde{\rho}_{\chi})^{P}(\Psi) \geq \alpha_{2},$$

2- 
$$(\tilde{\rho}_{\S})^N (\Psi + \xi) \leq \max\{ (\tilde{\rho}_{\S})^N (\Psi + \zeta), (\tilde{\rho}_{\S})^N (\xi - \zeta) \} \leq \alpha_1$$
,

3-
$$(\tilde{\rho}_{\chi})^{P}(\Psi + \xi) \ge \min\{(\tilde{\rho}_{\chi})^{P}(\Psi + \zeta), (\tilde{\rho}_{\chi})^{P}(\xi - \zeta)\} \ge \alpha_{2}.$$

**Case 2)** If  $\Psi$  ∈ I and  $\xi \notin$  I,then

$$(\tilde{\rho}_{\mathbb{Y}})^{N} \; (\mathbf{Y}) \leq \alpha_{1} \; , \, (\tilde{\rho}_{\mathbb{Y}})^{N} \; (\xi) \leq 0$$

$$(\tilde{
ho}_{\mathbb{Y}})^{p}$$
 (4)  $\geq \alpha_{2}$  and  $(\tilde{
ho}_{\mathbb{Y}})^{p}$   $(\xi) \geq 0$  , thus

$$1-(\tilde{\rho}_{\chi})^{N}(0) \leq (\tilde{\rho}_{\chi})^{N}(\Psi) \leq \alpha_{1},$$

$$(\tilde{\rho}_{\mathbf{Y}})^{P}(0) \geq (\tilde{\rho}_{\mathbf{Y}})^{P}(\mathbf{\Psi}) \geq \alpha_{2},$$

$$(\tilde{\rho}_{\mathsf{Y}})^N(0) \leq (\tilde{\rho}_{\mathsf{Y}})^N(\xi) \leq 0$$
 and

$$(\tilde{\rho}_{\mathcal{Y}})^P(0) \geq (\tilde{\rho}_{\mathcal{Y}})^P(\xi) \geq 0,$$

$$\begin{split} 2 - (\tilde{\rho}_{\mathbb{Y}})^N & (\mathbf{y} + \xi) \leq \max\{ (\tilde{\rho}_{\mathbb{Y}})^N (\mathbf{y} + \varsigma), (\tilde{\rho}_{\mathbb{Y}})^N (\xi - \varsigma) \} \leq \alpha_1 \ , \end{split}$$

$$3-\left(\tilde{\rho}_{\mathbf{Y}}\right)^{P}\left(\mathbf{\Psi}+\boldsymbol{\xi}\right) \geq \min\{\left(\tilde{\rho}_{\mathbf{Y}}\right)^{P}(\mathbf{\Psi}+\boldsymbol{\varsigma}),\left(\tilde{\rho}_{\mathbf{Y}}\right)^{P}(\boldsymbol{\xi}-\boldsymbol{\varsigma})\} \geq 0.$$

**Case 3**) If  $\Psi$  ∉ I and  $\xi$  ∈ I,then

$$(\tilde{\rho}_{\mathbb{Y}})^{N} (\mathbf{y}) \leq 0 , (\tilde{\rho}_{\mathbb{Y}})^{N} (\xi) \leq \alpha_{1}$$

and 
$$(\tilde{\rho}_{\chi})^{P}(\Psi) \geq 0$$
 and  $(\tilde{\rho}_{\chi})^{P}(\xi) \geq \alpha_{2}$ , thus

$$1 - (\tilde{\rho}_{\chi})^N(0) \le (\tilde{\rho}_{\chi})^N(\xi) \le \alpha_{1,}$$

$$(\tilde{\rho}_{\mathcal{V}})^{P}(0) \geq (\tilde{\rho}_{\mathcal{V}})^{P}(\xi) \geq \alpha_{2}$$

$$(\tilde{\rho}_{\chi})^{N}(0) \leq (\tilde{\rho}_{\chi})^{N}(\Psi) \leq 0$$
 and

$$(\tilde{\rho}_{\mathcal{Y}})^{P}(0) \geq (\tilde{\rho}_{\mathcal{Y}})^{P}(\mathbf{\Psi}) \geq 0$$

$$1 - (\tilde{\rho}_{V})^{N} (\Psi + \xi) \le$$

$$\max\{(\tilde{\rho}_{\chi})^{N}(\Psi+\zeta),(\tilde{\rho}_{\chi})^{N}(\xi-\zeta)\} \leq \alpha_{1}$$

$$2-(\tilde{\rho}_{\chi})^{P}(\Psi+\xi) \geq$$

$$\min\{\left(\tilde{\rho}_{\mathbf{V}}\right)^{P}(\mathbf{V}+\boldsymbol{\varsigma}),\left(\tilde{\rho}_{\mathbf{V}}\right)^{P}(\boldsymbol{\xi}-\boldsymbol{\varsigma})\}\geq0.$$

Case 4) If  $\Psi$  ∉ Iand $\xi$  ∉ I,then

$$(\tilde{\rho}_{\gamma})^{N}(\mathfrak{A}) \leq 0, (\tilde{\rho}_{\gamma})^{N}(\xi) \leq 0, (\tilde{\rho}_{\gamma})^{P}(\mathfrak{A}) \geq 0$$

$$0 \text{ and } (\tilde{\rho}_{\gamma})^{P}(\xi) \geq 0, \text{ thus}$$

$$1 \cdot (\tilde{\rho}_{\gamma})^{N}(0) \leq (\tilde{\rho}_{\gamma})^{N}(\mathfrak{A}) \leq 0,$$

$$(\tilde{\rho}_{\gamma})^{P}(0) \geq (\tilde{\rho}_{\gamma})^{P}(\mathfrak{A}) \geq 0,$$

$$(\tilde{\rho}_{\gamma})^{N}(0) \leq (\tilde{\rho}_{\gamma})^{N}(\xi) = 0 \text{ and}$$

$$(\tilde{\rho}_{\gamma})^{P}(0) \geq (\tilde{\rho}_{\gamma})^{P}(\xi) = 0,$$

$$2 - (\tilde{\rho}_{\gamma})^{N}(\mathfrak{A} + \xi) \leq \max\{(\tilde{\rho}_{\gamma})^{N}(\mathfrak{A} + \zeta),$$

$$(\tilde{\rho}_{\gamma})^{N}(\xi - \zeta)\} \leq 0,$$

$$3 \cdot (\tilde{\rho}_{\gamma})^{P}(\mathfrak{A} + \xi) \geq \min\{(\tilde{\rho}_{\gamma})^{P}(\mathfrak{A} + \zeta),$$

$$(\tilde{\rho}_{\gamma})^{P}(\xi - \zeta)\} \geq 0.$$

Therefore,  $V^{(N,P)}$  is a **BVFSAI-**  $\bar{\mathcal{E}}$  of  $\mathbf{H}$ . $\triangle$ 

**Corollary (4.7):** Let  $(\mathbb{H};+,-,0)$  be a **SAS-** $\bar{\mathbb{H}}$ ,  $\mathbb{Q}$  be a subset of  $\mathbb{H}$ 

and let  $Y^{(N,P)}=<(\tilde{\rho}_{Y})^{N},(\tilde{\rho}_{Y})^{P}>$  be an bipolar valued fuzzy subset on IE

$$\text{defined by}: \tilde{\rho}_{\mathbb{Y}}(\mathbb{Y}) = \begin{cases} [\alpha_1, \alpha_2] & if & \mathbb{Y} \in \mathbb{Q} \\ [0,0] & otherwise \end{cases}.$$

Where  $\alpha_1, \alpha_2 \in (0, 1]$  with  $\alpha_1 < \alpha_2$ . If  $\chi^{(N,P)}$  is a

**BVFSAI-**  $\bar{\mathcal{A}}$  of IC, then  $\mathcal{Q}$  is a SAI-  $\bar{\mathcal{A}}$  of IC.

#### **Proof:**

Since that  $V^{(N,P)}$  is a **BVFSAI-**  $\bar{\mathcal{A}}$  of IC. Assume  $\Psi$ ,  $\xi, \varsigma \in \mathbb{Q}$ ,

then  $\tilde{\rho}_{\gamma}(\Psi - 0 = \Psi) = [\alpha_1, \alpha_2] = \tilde{\rho}_{\gamma}(\xi - 0 = \xi)$ , so we have by Theorem (4.6),

$$1-\left(\tilde{\rho}_{\mathbf{Y}}\right)^{N}\left(0\right) \leq \left(\tilde{\rho}_{\mathbf{Y}}\right)^{N}(x) \leq \alpha_{1,} \left(\tilde{\rho}_{\mathbf{Y}}\right)^{P}\left(0\right) \geq \left(\tilde{\rho}_{\mathbf{Y}}\right)^{P}(\mathbf{Y}) \geq \alpha_{2},$$

$$(\tilde{\rho}_{\chi})^{N}(0) \leq (\tilde{\rho}_{\chi})^{N}(\xi) \leq \alpha_{1} \text{ and } (\tilde{\rho}_{\chi})^{P}(0) \geq (\tilde{\rho}_{\chi})^{P}(\xi) \geq \alpha_{2},$$

2- 
$$(\tilde{\rho}_{\chi})^N (\Psi + \xi) \leq \max\{ (\tilde{\rho}_{\chi})^N (\Psi + \zeta), (\tilde{\rho}_{\chi})^N (\xi - \zeta) \} \leq \alpha_1$$
,

3-
$$(\tilde{\rho}_{\chi})^{P}(\Psi + \xi) \ge \min\{(\tilde{\rho}_{\chi})^{P}(\Psi + \zeta), (\tilde{\rho}_{\chi})^{P}(\xi - \zeta)\} \ge \alpha_{2}$$
,

this implies that  $0, \Psi + \xi \in \mathbb{Q}$ . Hence  $\mathbb{Q}$  is a **SAI-**  $\bar{\mathbb{E}}$  of  $\mathbb{H} \cap$ 

**Proposition (4.8):** Every **BVFSAI-**  $\bar{\mathcal{A}}$  of  $\bar{\mathcal{A}}$  is **BVFSAS-**  $\bar{\mathcal{A}}$  of  $\bar{\mathcal{A}}$ .

#### **Proof:**

Since  $Y^{(N,P)} = \langle (\tilde{\rho}_{Y})^{N}, (\tilde{\rho}_{Y})^{P} \rangle$  is **BVFSAI-**  $\bar{\mathbb{A}}$  of  $\bar{\mathbb{A}}$ , then by Theorem (4.6),

 $\widetilde{U}(X^{(N,P)};\widetilde{t})$  is a **SAI-**  $\overline{\mathbb{A}}$  of IC. By Proposition (2.7),

 $\widetilde{U}$  ( $Y^{(N,P)}$ ;  $\widetilde{t}$ ) is a **SAS-**  $\overline{\mathbb{A}}$  of  $\mathbb{H}$ . Hence  $Y^{(N,P)}$  is **BVFSAS-**  $\overline{\mathbb{A}}$  of  $\mathbb{H}$  by Proposition (3.9).  $\triangle$ 

**Remark (4.9):** The convers of Proposition (4.8) is not true as shows in the example (3.3),

it is easy to show that (I£; +, -, 0)is  $\bar{\mathcal{A}}$ . And the fuzzy subsets  $\rho^+$ : I£  $\rightarrow$  [0,1] and  $\rho^-$ : I£  $\rightarrow$  [-1,0] by:

Define a bipolar valued subset  $\chi^{(N,P)} = <$ 

 $(\tilde{\rho}_{\mathbb{Y}})^N$ ,  $(\tilde{\rho}_{\mathbb{Y}})^P$  > of  $\mathbb{K}$  is a BVFSAS-  $\bar{\mathbb{E}}$  of  $\mathbb{K}$  as:

$$\chi^{(N,P)} \left( \mathbf{q} \right) = \begin{cases} \left[ \left[ -0.6, -0.3 \right], \left[ 0.3, 0.9 \right] \right] & if \mathbf{q} = \{0, a\} \\ \left[ \left[ -0.7, -0.4 \right], \left[ 0.2, 0.6 \right] \right] & otherwise \end{cases}$$

It is easy to check that  $V^{(N,P)}$  is a **BVFSAS-** $\bar{\mathcal{A}}$ , but not **BVFSAI-** $\bar{\mathcal{A}}$ .

**Proposition (4.10):** Let  $\mathfrak{A}$ : ( $\mathbb{H}$ ; +, -,0)  $\rightarrow$  ( $\mathbb{Q}$ ; +', -', 0') be homomorphism of SA-algebras. If B is a **BVFSAI-**  $\bar{\mathbb{A}}$  of  $\mathbb{Q}$ , then the inverse image  $\mathfrak{A}^{-1}(B)$  of B is a **BVFSAI-**  $\bar{\mathbb{A}}$  of  $\mathbb{H}$ .

#### **Proof:**

Since  $B^{(N,P)} = \langle (\tilde{\rho}_B)^N, (\tilde{\rho}_B)^P \rangle$  is a **BVFSAI-**  $\bar{\mathbb{A}}$  of  $\mathbb{Q}$ , it follows from Theorem (4.3), that  $(\rho_B^-)^N$  and  $(\rho_B^+)^N$  are **AFSAI-**  $\bar{\mathbb{A}}$  of  $\mathbb{Q}$  and  $(\rho_B^-)^P$  and  $(\rho_B^+)^P$  are **FSAI-**  $\bar{\mathbb{A}}$  of  $\mathbb{Q}$ .

Using Theorem (2.19) and Theorem (2.27),

we know  $\mathfrak{A}^{-1}((\rho_B^-)^N)$  and  $\mathfrak{A}^{-1}((\rho_B^+)^N)$  are **AFSAI-**  $\bar{\mathcal{A}}$  of  $\mathbb{H}$ 

and 
$$\mathfrak{A}^{-1}((\rho_B^-)^P)$$
 and  $\mathfrak{A}^{-1}((\rho_B^+)^P)$  are **FSAI**- $\bar{\mathbb{A}}$  of IC.  
Hence  $\mathfrak{A}^{-1}(B) = [\mathfrak{A}^{-1}((\tilde{\rho}_B)^N), \mathfrak{A}^{-1}((\tilde{\rho}_B)^P)]$  is a

**BVFSAI-**Æ of Æ. △

**Proposition (4.11):** Assume  $\mathfrak{A}: (\mathbb{H}; +, -, 0) \to (\mathfrak{Q}; +', -', 0')$  be an epimorphism of SA-algebras. If  $Y^{(N,P)} = \langle (\tilde{\rho}_{Y})^{N}, (\tilde{\rho}_{Y})^{P} \rangle$  is

**BVFSAI-**  $\bar{\mathcal{A}}$  of  $\mathbb{H}$  with inf-sup property, then f(Y) is a **BVFSAI-**  $\bar{\mathcal{A}}$  of  $\mathbb{Q}$ .

#### **Proof:**

Assume that  $\mathbb{Y}^{(N,P)} = \langle (\tilde{\rho}_{\mathbb{Y}})^N, (\tilde{\rho}_{\mathbb{Y}})^P \rangle$  is a **BVFSAI-**  $\bar{\mathbb{A}}$  of  $\mathbb{H}$ , it follows from Theorem (4.3), that  $(\rho_{\mathbb{Y}}^-)^N$  and  $(\rho_{\mathbb{Y}}^+)^N$  are **AFSAI-**  $\bar{\mathbb{A}}$  of  $\mathbb{H}$  and  $(\rho_{\mathbb{Y}}^-)^P$  and  $(\rho_{\mathbb{Y}}^+)^P$  are **FSAI-**  $\bar{\mathbb{A}}$ . of  $\mathbb{H}$ . Using Theorem (2.21) and Theorem (2.29), the images  $\mathfrak{U}((\rho_B^-)^N)$  and  $\mathfrak{U}((\rho_B^+)^N)$  are **AFSAI-**  $\bar{\mathbb{A}}$  of  $\mathbb{Q}$  and  $\mathfrak{U}((\rho_B^-)^P)$  and  $\mathfrak{U}((\rho_B^+)^P)$  are **FSAI-**  $\bar{\mathbb{A}}$  of  $\mathbb{Q}$ . Hence  $\mathfrak{U}(\mathbb{Y}^{(N,P)}) = \langle \mathfrak{U}((\tilde{\rho}_{\mathbb{Y}})^N), \mathfrak{U}((\tilde{\rho}_{\mathbb{Y}})^P) \rangle$  is a **BVFSAI-**  $\bar{\mathbb{A}}$  of  $\mathbb{Q}$ . $\triangle$ 

#### CONCLLUSION

The idea of this study avails as abasis for of new readings in the SA-algebra. We started by explaining of bipolar valued fuzzy SA-subalgebras and bipolar valued fuzzy SA-ideals on SA-algebras with their properties and substantial examples and theorems and The image and inverse image of them are defined.

#### **REFERENCES**

- [1] Akrm, M.,2011. Bipolar fuzzy graph, S. inf. Sci. ,181,5548-5564.
- [2] Areej T. Hameed,2015." Fuzzy ideal of some algebras," Faculty of Science, Ain Shams University, Egypt; PH.D.SC.Thesis.
- [3] charye P. Bhatta and Mukheriee, N.P., 1985. Fuzzy Relations and Fuzzy Group, Inform Sci, vol.36, PP:267-282.
- [4] Hameed, A.T. and Abed, A.S. ,2023. Some Fuzzy Properties on SA-algebra, to appear.

- [5] Hameed, A.T. and Abed, A.S, 2023. Bipolar Fuzzy *SA*-ideals of *SA*-algebra,to appear.
- [6] Hameed, A.T., Ali, S.H. and Flayyih, R.A.,2021The Bipolar-valued of Fuzzy Ideals on AT-algebra. Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-9.
- [7] Hameed, A.T. and Kadhim, E.K., 2020. Intervalvalued IFAT-ideals of AT-algebra. Journal of Physics: Conference Series (IOP Publishing), pp:1-5.
- [8] Hameed, A.T. and Raheem, N.J. ,2021. Intervalvalued Fuzzy SA-ideals with Degree  $(\lambda,\kappa)$  of SA-algebra. Journal of Physics: Conference Series (IOP Publishing), pp:1-13.
- [9] Hameed, A.T, Raheem, N.J. and Abed, A.H.2021. Anti-fuzzy SA-ideals with Degree (λ,κ) of SA-algebra. Journal of Physics: Conference Series (IOP Publishing), pp:1-16.
- [10] Zadeh, L.A, 1965. Fuzzy sets, Inform. and control ,vol.8, 338-353.

# فترات ثنائي القطب للجبر الضبابي الجزئي-SA والمثالي الضبابي -SA في جبر -SA الاء صالح عبد 1 ، اريج توفيق حميد 2

قسم الرياضيات، كلية التربية للبنات، جامعة الكوفة ، النجف، العراق <u>alaas.abed@uokufa.edu.iq</u> , <u>areej.tawfeeq@uokufa.edu.iq</u>

# الملخص:

في هذا البحث قدمنا تعريف لفترات ثنائي القطب للجبر الجزئي- SA وفترات ثنائي القطب للمثالي-SA في جبر-SA مع ذكر الخواص لكل منهم كما قمنا باعطاء وبرهان مجموعة من المبرهنات مع ذكر مجموعة من الامثلة الخاصة بهم. ايضا قمنا بتعريف الصورة والصورة العكسية ضمن تعريف التشاكل من جبر -SA والثبتنا ان الصورة لفترة ثنائي القطب للجبر الجزئي-SA هي ايضا فترة ثنائي القطب للجبر الجزئي -SA هي ايضا فترة ثنائي القطب للجبر الجزئي -SA كما قدمنا تعريف جديد وهو القيم السالبة للجبر الجزئي الضد ضبابي مع ذكر الامثلة والمبرهنات الخاصة به والمرتبطة بفترات ثنائي القطب للجبر الجزئي -SA ثم بعد ذلك انتقلنا الى اثبات ان الصورة والصورة العكسية لفترات ثنائي القطب للمثالي -SA وقمنا بتعريف جديد هو القيم السالبة للمثالي الضد العكسي مع ذكر الامثلة والمبرهنات المتعليف بوبط هذا التعريف بفترات ثنائي القطب للمثالي -SA من خلال مجموعة من المبرهنات.

الكلمات المفتاحية: جبر -SA وفترات ثنائي القطب للجبر الجزئي-SA وفترات ثنائي القطب للمثالي -SA.