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ABSTRACT

Complex partial differential equation (CPDES) appeared around the year 1900. D. Pompeiu
was a famous mathematician who left a large impact in this field through introducing the

Pompeiu integral operator, which forms a basis in the subject CDEs. The complexity of
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some real-world problems has been conquered via the methods of solution for CDEs . Two-
dimensional differential transform was proposed by Chen and Ho as a powerful tool for
solving PDEs and used to solve linear and nonlinear complex partial differential equations.
This paper presents two-dimensional differential transform for the complex partial

derivatives of higher orders for a complex functions of two complex independent variables,
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and then use these complex partial derivatives to find an exact solution to a complex partial
differential equation of the fourth order using two-dimensional differential transform

Introduction

Complex differential equations appeared at the end
of the last century and became today are of great
interest by the researchers because it has many
applications in science and engineering such as quantum
systems and neural networks. Two-dimensional
differential transform was introduced by Chen and Ho
[3] and it is regarded an effective method among the
methods that used for solving partial differential
equations [1], [2] and [9]. Two-dimensional differential
transform method are used for solving linear complex
partial differential equations such as [4], [5], [6] and [7]
and for nonlinear complex partial differential equations
[8]. In this paper, we are interested in solving complex
partial differential equations of higher orders using two-
dimensional differential transform method analytically.
Our review begins with.

*Corresponding author at: Department of

Mathematics, Faculty of Education for Girls, University
of Kufa, Najaf; Iraq;
ORCID: https://orcid.org/0000-0003-1343-1523;

Tel:+96407822193376 , Email address:
amalkh.hayder@uokufa.edu.iq

Our paper begins with the basic concepts for our
work. Then, it includes finding two dimensional
differential transform for some complex partial
derivatives of higher orders. Also, it introduces two
dimensional differential transform method for solving
fourth order complex partial differential equation.
Finally, the conclusions are given.

Basic Concepts
Definition 2.1. [3] Let f (X,y) be a function of two

variables which is analytic and continuously
differentiable on the nonnegative integer. Then two

dimensional differential transform of f (x,y) s
defined as follows:

1 8" (x,y)
F f =
(p.q) Sl Xy

. (20)

x =0,y =0
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Where f (X,Yy) is the original function and F(p,q) is
the transformed function. The differential inverse
transform of function F(p,q) is defined as follows:

Fx,y) =Y S F(p.a)x Py, 2.2)

p=0q=0
Theorem 2.1. [3] If w (X,y)=u(X,y)xv(X,y) then
W (p,q) =U (p.q)+V (p.q).

al’+Su(X’y)

Theorem 2.2.[3] If w(X,y)=———=then
[3] x.,y) PV

W (p,a) =(p+D(p+2)---(p+r)@+D@+2)---(@ +5)

U(p-+r,q+5s).

Consider the complex function
w(z,Z)=u(x,y) +iv(x,y) where z =X +iy, and
Z =x —1ly. The first, second and third orders partial
derivatives of w (z ,Z) are given as follows:

Theorem 2.3. [5] The partial derivatives of the 1%
order of w (z,Z") are shown as:

ow _1ow . ow,
or 2 ox oy

éw_l(aw 8w)
oz 2 0x oy

where

ow . ow .

8_x=ux +IV,, —=U, +IV,.

Theorem 2.4. [6] The partial derivatives of the 2 ™
order of w (z,Z") are shown as:

ow(z,7) 1 0w oi ow  ow

"= "% axay_ayz)'
,_ dw@,7) 182\/\2+82V\2) L
0L 0T 4°0x° oy 4
- 82W(Z,Z_)_l(82w i oW a2w)_

oz 4'x?  xoy oyl

Theorem 2.5. [7] The partial derivatives of the 3 ™

order of w (z,Z") are shown as:

W@z) 10w , oW . ow oW
ot 8t axey’  axly  oy°
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ow@iz,z) 10w ow . ow . ow

- ——=—(—5+ st ——+1—
0L 0Z 8 ox° oxoy oxoy oy

B 83\N(z,z‘)_1(63w+ ow . ow oW
or’or 8 ox® oxoy:  oxy oyl

B a?\/v(zs,z) 1(a?w 3 a%/vz_3i aiZN +iﬂ)
oz 8 ox® oxoy oxoy oy
The Complex Partial Derivatives of Higher Orders

of the Complex Functions
This section introduces the fourth and fifth order

partial derivatives of the complex function w (z,Z") in

)

)

terms of two real variables X and y where
Z=X+Ily, Z=x—1ly and

W (z,Z)=u(x,y)+iv(x,y).

Theorem 3.1. The fourth order partial derivatives of
complex a function w (z,Z) are given as follows:

w@r) tow L ow L dw oW o
A e i +4i +—).
ot 6ty oyt &y o

wez) 1w . dw o oW oW

2- ——=—(—+2i 7+ ——-—).
ozor® 16 ox* oX oy ox°oy oy
ow(Ez,z7) 1 a‘\/v ow  ow

J oz 2072 _( i~ 2 4)'
7 “0Z 16 "ox * 6x oy: oy

wez) 10w oow o dw oW
- -2 =2 -—)
aor 16t axgy’ !

ox’oy oy
W) LW w oW d o

—(—-6 +4i -4i +—).

at o eat xy oyt %y iy
Proof. To prove 2, we have
a‘\N(z,z')_gg(aw il 3aw 6%)
ad’  8ar o’ axay oy
—}i(@-s i W a%N)ax a(ai:v 0
8ok ot akeyt oy oy a oy o axdy
4 o a%w)ay]
ey oyt a
1o o ow oW

( 20—+l ——-—)
16 oyt ey oy
The other proofs are similar.
Theorem 3.2. The fifth order partial derivatives of a
complex function w (z,Z") are given as follows:
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L) L e B e,

TR ay ay ay ay y
2_aEW(z,z) Low ow ow . w . dw oW

- —(—5—u 5t d 43— -1 —)
it R ay' oyt oy ay g
2 1) 1(afw oW zaﬂlv Wi Gl i o +i@
W RnaC ayt ayady ay gy
M) L S
b= — (Gt U — i ——-i—)
Tt nad ayt oyt aky o'y g
. M) 1w o dw i Gl P Gl +i@
a'r R axay adyt Tkt T oty o
oo VBRI LAW o O g T T DYy
o onad oyt ayt o ay ay gy

The proofs can be made as in Theorem 3.1.

)

Solution of Higher Order Complex Partial
Differential Equation by Two- Dimensional
Differential Transform Method

In this section, we introduce an exact solution to a
complex partial differential equation of the fourth order
by using two dimensional differential transform method.
Example 4.1 Consider the fourth order complex initial
value problem:

84\_"2 +ﬂ—w -0, 4.1)
0z oz

w (x,0) =e” +2cosh x (4.2)
MW (x,0)=—ie* +2i sinhx  (4.3)
oy '
ow .

—(x,0)=-e" —2coshx  (4.4)
ow \, .
——(x,0)=ie* —2isinhx. (45
N 7 (x,0)= (4.5)

Let us utilize two-dimensional differential transform on
both sides of the equation (4.1). By Theorem 3.1,
Theorem 2.4 and Theorem 2.2 we obtain:

-1
UIp+d e 203 943491
(+200+300+20 +20+2-4p+D0p+2p+ 34 (p+30+)

Hp+(p+2)(p+3(p+4 (p+40)-4a+D) @ +2U (p.g+2) + 8(p+)
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@+IV (p+1a+D)+4p+Dp+2U (p+20)-1(pA]  (4)

V(p,q+4)=—(q+l)(q+2)( el )[ 4p+Di0+Di6 +200 +3V (p+Lg+3-6(p+])
(P+2)a+Y+2V (p+20+2)+4(p+D)p+2(p+30 -2 (p+30+1+
(p+Y(p+2)p+3)p+4) (p+40)-4a+1a 2V (p.0+2 - Bp+Yfa+)

U(p+1a+D)+4(p+D(p+2V (p+20)-16/ (p,a)] (4.7)

since w (x,0)= YW (p,0)x* = U (p,0)+iV (p,0))x?

and according to condition (4.2) we have:
w (x,0)=e" +2coshx

+ F— ot
12 3' 4! 5! 6! n!
As a result, we obtain:

2+ (-1)°
I

U (p,0) = p=012,...

V(p,0)=0,p=012,....
As well as , since

M:iiqw (p,q)x Py, that means:
8y p=0q=0
ow (x,0) & - .
W0 _ S (p,x” =3 WU (p.1)+IV (p, D)X,
ay p=0 p=0
and according to condition (4.3), we have:
M:—ieX +2i sinhx
3 4 5 n+l
_|[_ é_x_ X _X_+X_+...+&Xn+...]'
1 2t 31 41 5! n!
As a result , we obtain:
U(p,)=0,p=012,...

P+l 4,
vipy=E poorz..  *Y
Similarly, since
Fwlx.y) UOY) -3 S a@-w (p.a)x Py, that

8}/ p=0q=0
means:
ow (x,0)

P ZZ\NpZX” ZZ(UpZ +iV (p,2)x"

and accordlng to condltlon (4.4) , we have:
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oW (x,0)

y =—(&" +2coshx)
O G G G GG I | (R
= — +———X" =],
120 30 4 5 g n!
As a result , we obtain:
_2_(_1\P
Up,2)==2=ED" 1 o012,
2p! (4.10)
V (p,2)=0,p=012,...
Finally, since
oW (x

SIS S aa-Da-2W (payy,

which means:

oW (x,0 < z :

a)(/Xg ) =6) W (p,3)x" =6 U (p,3)+iV (p, )",
p=0 p=0

and according to condition (4.5) , we have:

oW (x,0)

3

=—i(-e" +2sinhx)

As a result , we obtain:
U(p,3)=0, p=0,12,...

_1)° 4.11
V(p,3):%, p=012,... (#.11)

Now, we shall find the values of U (p,q) and

V(p,q) for gq=4,5.., ad p=07L12,....
Therefore, it is clear that:
U(p,2r+1)=0

(4.12) where r=0,12,...,
V (p,2r)=0,

respectively.
If g =0 is placed into equation (4.6), the result is:

Journal of University of Anbar for Pure Science (JUAPS)

Open Access

If g =1 is placed into equation (4.7), the result is:

v (P,5)=%[-96(P+1)U (p+14)-36(p+1(p-+2V (p+2.3)+8(p+1)(p +2)(p +3)

Up+32)+(p+1)(p+2)p+3)(p-+4V (p+41)-24/(p,3)-16(p+1V (p
+12)+4(p+(p+2) (p+2,0)-167 (p,1)]
_ (=D
" 120p!
Similarly, if g =2 is placed into equation (4.6), the
result is:

U(p.6) =3_—610[240(p +IV (p+19)-72(p+1)(p +2U (p+2,4)-12(p +1)(p+2)(p +3)
V(p+33)+(p+1(p+2)(p+3)(p +4U (p+4,2)-48U (p,4)+24(p +1V (p+1
3)+4(p+1)(p +2) (p+2.2)-180 (p,2)]

2-()
blp! >

and if g =3 is placed into equation (4.7), the result is:

p=012,....

V(p,7) :%[—480@ +1U (p+1,6)-120(p+2)(p+2)V (p+2,5)+16(p+1)(p+2)

(p+3U(p+34)+(p+1(p+2)(p+3)(p+4) (p+4,3)-80/ (p,5)-32(p

U (p+14)+4(p+1(p+2V (p+23)-16/ (p.3)]
=ﬂ, p=0712,....
7'p!

By applying equations (4.6) and (4.7) as above manner
repeatedly, we can obtain that:

U (p.2r) - D 2+(CD")

201p] (4.13)
and
-1 p+r+l
V (p,2r +1)=m, (414)

where r =2,3,... , respectively.

U (p,4)=;—i[24(p+1)/ (p+13)-12(p +2)(p+2U (p+2,2)~4(p +1)(p +2)(p + JNOw, using the above values of U (p,q) and V (p,q)

, We obtain:

Vi(p+3)+(p+1(p+2)(p+3)(p+4U (p+4,0)-8U (p,2)+8(p +1V (p+

L) +4(p+1)(p+2U (p+2,0)-16U (p,0)]
-2-(-0)°
6!p!
_2+(=D°
~ 24p! ]

p=0212,...

p=012,....

Wz =3 YW (pyey’

=U(0,0)+U (LO)x +U (2,0 +U (3,0)x° +U (4,0)x *+--++U (p, O)x " 4---
HV (0.04V (ILDx 4V 2064V BDCH @Dx +4V (p.)x -]y
HU(0,2+U (L2x +U (22x +U B.2x* +U (4 2 44U (p, D¢ 4y
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[V (0,3)4V (LYK 4V (2,32 4V 3,V (4,3)x -4V (p,Ix P +--]y°
eyt

+[U(0,4)+U (L 4)x +U (2,4)x* +U (3,4)x > +U (4,4)x * +---+U (p,4)x "
03, 3, 1 3,
234X —iy + xRy -y =Py =X o x +—
/ 2 / 2y a2 / 2y y 4 3l
Ny
2.2
' 3
=y =y e
ﬁy 24y

By putting z =x +1y and Z =x —iy , we obtain:

= —32——212—232——2132—
W(Z,7) =347 +=(2 +2T +1)+= (2" -1 )+=(2 -2l +71°)+—(2"+3 7
(2.7) 8( )4( )8( ) 48(

1 1 1
-2 - - = (- - ) -
I')- 16( )+ 16( )- 48(

% 2z‘+3zz‘2—2'3)+i8(z“+4zz'3+62 Tl 3z‘+z“‘)+9—16(z“+22 '

—Zzz'3+z"‘)+i(z“—22 2z‘2+z"‘)+£(z“—2232‘+222'3—z“‘)+i(z4
64 9% 128

N6 T AT T e
As a result, the solution of the CIVP (4.1)-(4.5) is:
=2 3 4 =4
1" 1" 1 1
W(,T)=34T+1" 4 —+—+—+—
2 6 12 24

=2 73 4 Z4
STt ) (247 =+
21 3 4 12

72 73 4 ZZ 24
=47+ —+—+—+ )+ 2+ =+ —+)
20 3 4 204l

—e’ +2coshz.

Conclusion

Two-dimensional differential transform method
can be used for solving complex partial differential
equations of higher orders by transforming the complex
partial derivatives to real derivatives. Two-dimensional
differential transform method is regarded an effective
tool in finding exact solutions to the complex partial
differential equations.
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